Paper | Title | Page |
---|---|---|
TUPYP036 |
Mechanical Design of Water-cooled Slits System at HEPS | |
|
||
The fourth generation synchrotron radiation light source currently under construction in China has the characteristics of high energy and high brightness. High Energy Photon Source(HEPS) can be used in many basic and engineering research fields, so different spot sizes are modulated for different research needs. This design is a rotary water-cooled white beam slit system, which mainly includes absorber parts and driving mechanism. On the premise of ensuring the integrity of the absorber, the aperture is processed inside the absorber, and the absorber is rotated by the driving mechanism, so as to realize the adjustment of the aperture of the slit. The system has the characteristics of compact structure, high yield and simple processing, and can achieve the same performance index while saving time and space costs. At present, the function of the experimental prototype has been verified on the 3W1 high energy test beam line of BSRF, and the spot size can be adjusted. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPYP037 | Mechanical Design of Multilayer Kirkpatrick-Baez (KB) Mirror System for Structural Dynamics Beamline (SDB) at High Energy Photon Source (HEPS) | 82 |
|
||
SDB aims in-situ real-time diagnosis in dynamic compression science and additive manufacturing. Nano-experimental environment requires highly multilayer KB mirror system in thermal deformation and stability of mechanism. This paper illustrates the KB cooling scheme and mechanical design. Only using variable-length water cooling to control the temperature and thermal deformation of mirror has limitations here. First, the installation of cooling system should be non-contact so that the surface shape can be sophisticatedly controlled without deformation of chucking power. Second, the distance between the HKB and the sample stage is too small to arrange the cooling pipe. Third, the KB mirror has multi-dimensional attitude adjustment. Cu water cooling pipe would be dragged with adjustment thus it has to be bent for motion decoupling, which occupies considerable space. Thus, the Cu cooling block and water cooling pipe are connected by copper braid. Eutectic Gallium-Indium fills a 100 ¿m gap between the cooling block and KB mirror to avoid chunking power deformation. Finally, the structural stability and chamber sealability is analyzed. | ||
Poster TUPYP037 [1.234 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-MEDSI2023-TUPYP037 | |
About • | Received ※ 24 October 2023 — Revised ※ 04 November 2023 — Accepted ※ 08 November 2023 — Issued ※ 12 April 2024 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THOBM03 |
Progress and Core Technologies Development of Monochromators for HEPS | |
|
||
HEPS is the first low emittance 4th generation light source in China, as monochromators are often limiting the performance of beamlines, many challenges are faced to preserve the quality of the beam. In order to meet the stringent and versatile requirements of 12 in house developed monochromators for different beamlines, several core technologies have been studied and developed. Stability considerations, vibration measurement system and methods are introduced, stability below 10 nrad RMS are measured for operation conditions by laser interferometers. Thermal resistance study at low temperature was carried out, enabling more accurate FEA of cooling. Clamping deformation of crystals at low temperature are experimentally studied, slope errors below 0.1 microradian RMS are measured. Design and test results on different types of monochromators will also be presented. Results show that the in house developed monochromators are able to meet the requirements of HEPS beamlines. | ||
Slides THOBM03 [8.445 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |