JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for TUOBM01: ForMAX: A Beamline for Multi-Scale and Multi-Modal Structural Characterisation of Hierarchical Materials

@inproceedings{gonzalezfernandez:medsi2023-tuobm01,
  author       = {J.B. González Fernández and V.H. Haghighat and S.A. McDonald and K. Nygård and L.K. Roslund},
  title        = {{ForMAX: A Beamline for Multi-Scale and Multi-Modal Structural Characterisation of Hierarchical Materials}},
% booktitle    = {Proc. MEDSI'23},
  booktitle    = {Proc. 12th Int. Conf. Mech. Eng. Design Synchrotron Radiat. Equip. Instrum. (MEDSI'23)},
  eventdate    = {2023-11-06/2023-11-10},
  pages        = {15--18},
  paper        = {TUOBM01},
  language     = {english},
  keywords     = {experiment, detector, focusing, scattering, operation},
  venue        = {Beijing, China},
  series       = {International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation},
  number       = {12},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2024},
  issn         = {2673-5520},
  isbn         = {978-3-95450-250-9},
  doi          = {10.18429/JACoW-MEDSI2023-TUOBM01},
  url          = {https://jacow.org/medsi2023/papers/tuobm01.pdf},
  abstract     = {{ForMAX is an advanced beamline at MAX IV Laboratory, enabling multi-scale structural characterisation of hierarchical materials from nm to mm length scales with high temporal resolution. It combines full-field microtomography with small- and wide-angle x-ray scattering (SWAXS) techniques, operating at 8-25 keV and providing a variable beam size. The beamline supports SWAXS, scanning SWAXS imaging, absorption contrast tomography, propagation-based phase contrast tomography, and fast tomography. The experimental station is a versatile in-house design, tailored for various sample environments, allowing seamless integration of multiple techniques in the same experiment. The end station features a nine-meter-long evacuated flight tube with a motorized small-angle x-ray scattering (SAXS) detector trolley. Additionally, a granite gantry enables independent movement of the tomography microscope and custom-designed wide-angle x-ray (WAXS) detector. These features facilitate efficient switching and sequential combination of techniques. With commissioning completed in 2022, ForMAX End Station has demonstrated excellent performance and reliability in numerous high-quality experiments.}},
}