JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for THPPP034: Research on the Identification Method of Micro-Vibration Harmonic Signal Based on Kurtosis

@unpublished{liu:medsi2023-thppp034,
  author       = {R.H. Liu and L. Kang and L. Liu and G.Y. Wang and J.S. Zhang},
  title        = {{Research on the Identification Method of Micro-Vibration Harmonic Signal Based on Kurtosis}},
% booktitle    = {Proc. MEDSI'23},
  booktitle    = {Proc. Int. Conf. Mech. Eng. Design Synchrotron Radiat. Equip. Instrum. (MEDSI'23)},
  eventdate    = {2023-11-06/2023-11-10},
  language     = {english},
  intype       = {presented at the},
  series       = {International Conference on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation},
  number       = {12},
  venue        = {Beijing, China},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {07},
  year         = {2024},
  note         = {presented at MEDSI'23 in Beijing, China, unpublished},
  abstract     = {{Large synchrotron radiation equipment works in complex microvibration environment which includes random vibration and periodic harmonic vibration signals. The harmonic signal will affect the identification of the working mode of the structure, and the identification of the harmonic signal can be used as the identification of the micro-vibration source. In this paper, according to the difference between the statistical characteristics of the system response and the harmonic response, a kurtosis value method based on random variable is applied to identify the harmonic response. The effectiveness of the method is verified by the simulation and the vibration data results of Shenzhen Sager Tower, which provides a new method for eliminating the influence of harmonic response in the following working modal parameter identification and vibration source identification of synchrotron radiation device.}},
}