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Partners in Mechatronic Innovation

Founded in 2007

Located in the Eindhoven region, The Netherlands
» Cleanrooms, Temp controlled enclosures, low-nose floor, ...

Market segments, professional production equipment
— Semiconductor (Wafer scanners, die-bonders)
— Consumer lifestyle (Flat panel layer deposition)
— Analytical and imaging (Electron microscopes)
— Scientific instrumentation (Synchrotron beamlines equipment)

Our working approach:
» Use to work on high-risk R&D project
* In close cooperation with customer
» Floating specifications and interfaces
* Understanding use-cases and system interaction
» Design and commit to system performance
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From quasi-static to high dynamic scanning MI
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Trent in beamline equipment: applications need fast and high dynamic scanning with nm precision

Scanning DCM of LLNS (nrad level) Sample manipulator fast xy-scanning at fixed Rz (nm level)

Fast scanning stage for entire wafers (sub um level)

Metrology system 6 DoF | Rz Scanning [x,y,z,Rz]
nm level bz simultaneously
=
@
s
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Mechatronics in Semiconductor manufacturing Ml

PARTNERS IN MECHATRONIC INNOVATION

Front-end < > Back-end
Electrical contacts and
Source: ASML packaging S

chip '\

plastic

Optical
Lithography

Dicing _ _
X e ) Die bonding: extreme fast 72.000 Dies/hour (= 50 msec/Die)
Integrated circuits: multi layer devices with nm precision Die Stage accelerations x00 m/s2, with sub um positioning requirements
200 wafer/hours

Stage at x00 m/s2 and x m/s, with sub nm positioning requirements
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Semiconductor Lithography Tool (Wafer Scanner) MMS artners
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Complexity / technology

2010’s:
- NXE EUV systems
- Resolution: 32 to <20
2000,8- - ov(;rr,layt 2°nm -
Twinscan

{ 1 990'3: Resolution: 100 to 38 nm
W PAS 5500 steppers/scanners overiay: 20 to 4 nm
1989:

Resolution: 400 to 90 nm
1984: PAS 5000 overlay: 100 to 12 nm Info from www.ASML.com

Resolution: <500 nm

PAS 2000

overiay: 100 nm
Resolution: >1 ym Q‘ ASML
overlay: 250 nm For o who thank ahead ACCU racy
www.ASML.com .
250nm 700nm 70nm 1nm g
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Semiconductor Lithography Tool (Wafer Scanner) MI
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Planar configuration:
+  Continues scanning

*  Planer 6 DoF actuator
*  Magnetic levitation

*  Long/short stroke

*  Performance sub-nm

Complexity / technology

H-drive configuration:

»  Stepping

*  Linear motors

*  Air bearings

| = Single stage

*  Performance sub-um

Twinscan

1 990,8' Resolution: 100 to 3|
PAS 5500 steppers/scanners overlay: 20 to 4

el Resolution: 400 to 90 nm
7

. overlay: 100 to 12 nm Info from www.ASML.com

Resolution: <500 nm

PAS 2000 overiay: 100 nm %
Resolution: >1 pym ) %’ ASML
overlay: 250 nm ACCU racy
www.ASML.com Foe who thak ahead
250nm 700nm 70nm 1nm g
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A Extreme aspheres enabling
Resolution = k; X - | further improved wavefront /
/| imaging performance

Projection Optics Box:
« 6 EUV mirrors, all fully position controlled (6 DoF) el

» Position stability << 1 nrad / 1 nm AV F High NA
+ Position stability reached from active feedback bscursioncnables
(electro-magnetic actuator) V/ v

= Potential of up to 2x vs 3300
level '\A0.25 NA 0.33 NA >0.5 Design examples

Source: Zeiss, “EUV lithography optics for sub-9nm resolution,” Proc. SPIE 9422, (2015)

Tight surface specifications enabling
low straylight / high contrast imaging
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System level mechatronisch design approach Mi
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System Architecture

Balancing the design, error budgeting

Metrology

System level metrology, sensors and calibration

Dynamics and Control

Servo contro, vibration isolation and damping

Design roles for ultra-precision systems

Thermal
Stability, temperature control, error compensation

Reliability, robustness, ...

Design for manufacturing, assembly, ...

\ Precision Design principles

These ultimate performances can not be met by
“stacking” standard components, like stage, actuators or sensors.

System Level Design Approach —
Understanding and control the system design fully to be able to balance performance.
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Content of this presentation Mi
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System Architecture

Dynamics and Control

Thermal

Dynamic Architecture
Actuator choice
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System Architecture Mi
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Ultra-precision and high-dynamic systems:

» Multiple frame architecture
» Force and metrology frame separation
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System Architecture MM5 artners
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Ultra-precision and high-dynamic systems:

* Dynamic decoupling
* Dynamic separation between fast moving stages and
sensitive projection optics on metrology frame
» 6 dof positioning by active feed back
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System Architecture

Ultra-precision and high-dynamic systems:

» |solation of reaction forces

For high dynamic systems, extreme acceleration forces are needed:

» Reaction forces will excide (via force-frame/floor/isolation system)
metrology frame

» Excitation leads to servo stability issues (dynamics in force frame,
so-called reaction path dynamics)

Solution: Reaction (balance) mass decoupling.
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System Architecture MM5 artners

PARTNERS IN MECHATRONIC INNOVATION

Ultra-precision and high-dynamic systems:

» Long-stroke/ short stroke stage concept
* Long-stroke reaching um level positioning
» Short stroke reaching nm level positioning
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Actuator choice MM5 artners
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Behavior of actuator should enable dynamic architecture:
» Long stroke to short stroke configuration
» Reaction mass decoupling

Inherent complaint actuator enables dynamic decoupling

Info from www.ASML.com
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Actuators: Dynamics of system with Piezo and Lorentz MMS artners
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F "Position" actuator: dynamic coupling

x » Dynamic coupling between
Ax = f(Qcharge) - E

stage and frame due
o
lﬁ f
v + Eloctric huld ||
£ I

"Position” actuator

A
Piezo

inherent to stiffness piezo
actuator

« Limiting eigen-frequency is
stage mass on stiffness of

Shrink Expand pIeZO
_ 1 | kpa
=% [Motage
"Force" actuator
"Force" actuator: no dynamic coupling
Force= f([) » Force is only result of current,

no inherent stiffness.

* Hence, stage and frame are
decoupled, limiting eigen-
frequency is internal stage
resonance

Inherent compliant actuator (e.g. Lorentz):
+ Decoupled dynamic architecture, enables multiple frame and stage concepts.
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Content of this presentation Mi
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Dynamics and Control

~

Dynamic error budgeting
Damping
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Dynamic Error Budgeting as design tool MIFartners
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Dynamic Error Budgeting (DEB): way to predict performance of Mechatronic systems.
Objective manner to make design choices.

Mechatronics system model

Turbo-pump noise

Cooling water flow induced vibrations

Metrology frame

Water cooling
-

Position of stage [x,y,z,rx,ry,rz]

Environment temperature fluctuation

- Floor vibration
isolation system

Force frame

Floor vibration [x,y,z,rx,ry,rz]

Fioor

Amplifier noise and quantization

Sensor noise and quantization
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Mechatronic system model links the inputs (e.g. noise sources) to the output (stage position [x,y,z,rx,ry,rz])
Error propagation via Transfer Functions:

Mechatronics system model

riT‘

Force dist. to performance Metrology frame

Position of stage [x,y,z,rx,ry,rz]

v

TF (dB) [m/N]

i loor vibration
ol m
>
Force frame
10° 10

101 2
Frequency []-?z] I l
T

107 10°

: )
L] Amp Controler (= Floor

Amplifier noise and quantization
VAR5 = Tamp-posVARampT amp-pos With T Conjugate Transposed of T
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Mechatronic system model links the inputs (e.g. noise sources) to the output (stage position [x,y,z,rx,ry,rz])

MI-P-D2021-196

Mechatronics system model

TF (dB) [m/m]

Floor dist. to perf. channel r

Metrology frame

Position of stage [x,y,z,rx,ry,rz]

Ve loor vi tfon
| ,
” Farcgﬁw'
10° 10* Floor vibration [x,y,z,rx,ry,rz]

10! 102
Fr%quency [}-?z] I

v

107! 10°

19



Dynamic Error Budgeting as design tool MIFartners
]

Input: Data in frequency domain, PSD Output: CPS or CAS

10" PSD contributions to performance channel
——AX Performance
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10"k AZld DAC
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Dynamic optimization

Increasing stiffness and reducing mass:
— Increasing eigen-frequencies
— Increasing disturbance rejection

0 Floor to Positioning Error
10 - , ‘
~1 o2t
~
£
Ny
S ot
10° .
107! 10’ 10! 10° 10°

Frequency  [Hz]
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CAS  [nm]

Positioning Error

~
N

~
)
T

~
=
T

Co
T

(=N
T

107! 10° 10 10° 10°
Frequency  [Hz]

Cuck optimized for dynamic performance:

» Topography Optimization and AM

22
22
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Increasing damping

Increasing damping, e.g. by means of polymer

Floor to Positioning Error

10"

Gain

100 2

10’ 10
Frequency  [Hz]
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10

14

Positioning Error
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12 ¢

10+

[nm]

CAS

Higher stiffness

23

23

Frequency  [Hz]
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Damped Tuned Mass Damper (High Freq application) MI
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NODAL SOLTICR

dunmy_chuck_elastic mode 16

&
>~ 30 dB reduction

-140

-160 |-
-180 \
-200 -

-220 -

Magnitude (dB)

—— Undamped
— Damped

Dominant resonances in 1-4 [kHz] range significantly damped 2401 S . S S I T N
10 10 10
Frequency (Hz)
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Damping increases robustness Mi
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Not only reduction of disturbance level, but also increasing robustness
1. Higher servo bandwidth with larger robustness margins
2. Less sensitive to changes in dynamic properties over time (shifting of high frequency peaks)

Undamped: high peaks

Real systems have many resonance Damped: lowever peaks and more smooth

limiting servo stability

Undamped vs. Damped - X

Optical system X stage e
= 2 —4-
B FE. @ -180 \
servo 3 A J‘I 'J, i
Basefirame E 200+ : : 0w _'-.F-,', F-. 1 ah
5 o .\"ILFI IF
- “
L i s
T i | I
| -240 L :
10° 10 10°
o X
-
e X, tage " 1 :
Stage - 1501 )
g ] — 1001
| j=2}
™ ] i £ w0
. ] g o
(@] I sor |
O 40l —— 0O Undamped L &
——— OO Damped: initial rubber fit
150 0O Damped: final rubber it | \ Il \ |\|
C 10 10” o

Frequency [Hz]
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Example of high-damping polymer Mi
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Movie:
Damping
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Damper_demo_logo.mpg

Content of this presentation Mi
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Thermal

(. )

fo

\_ J

Thermal error compensation
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Thermal effects

Thermal effects are one of the largest errors source in
high-end precision equipment:

» Larger substrate size

» Higher heat loads from process

* Increasing processing time

* Increasing stability demands (um to nm)

MI-P-D2021-196 28

MIFartners

PARTNERS IN MECHATRONIC INNOVATION




Mi

Therma I -elaSti C CO m pensation PARTNERS IN MECHATRONIC INNOVATION

Compensation of thermally induced deformations based on measured temperatures

metrology frame

probe .
Xx-interferometer

workpiece axis
manipulation
system

connection
wires

z-interferometer
axis

X T,
p(t)=S-T(@t) - |y[=S-
z T,

Design and optimisation questions:
* What are the optimal positions and (minimum) amount of temperature sensors?
* How to find the optimal thermo-elastic compensation matrix S ?

Several approaches: “nodal modes” / “eigen modes ” / "POD modes” / ...
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Thermal Compensation strategies: Eigen modes Mi
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sssss

Structural dynamics — Eigen-mode shapes

Thermal system —  “Thermal Eigen-modes shapes”

x-interferometer

axis y-interferometer

axis
mirror table

z-interferometer
axis

Mode shape 1 Mode shape 2 Mode shape 3 Mode shape 4

Time constant 7, T, <1y T3 <713 Ty < T3
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Thermal Compensation strategies: Eigen modes Mi
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Arbitrary temperature field = sum of “Thermal Eigen-mode Shapes”:

T(t) = ¢1q:(0) +  $aq2(t) +

/7‘

™~
Thermal States

Temperature field

Thermal Mode shapes

MI-P-D2021-196
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Which states (modes) are relevant?:
1.  Model controlability
2. Model observability



Thermal Compensation strategies: Eigen modes Mi
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Arbitrary temperature field = sum of “Thermal Eigen-mode Shapes”:

T(t) = ¢1q:(t) + g+ o+

MI-P-D2021-196 32

» Location of temperature sensors to identify relevant states q;, q; ... qi
+ Only these states are necessary to predict the relevant part of T(t)



Thermal Compensation strategies MM5 artners
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Example performance of thermal compensation model:
initial drift of ~1.7 um is reduced to ~ 15 nm

-6
x 10
A< 3 B 22
)
Y frame L
= enclosure
g 2
S drift
§ } Q 21.5
~
3 laser N Lprame |
T§ 0 g 21 (average)
= §
= probe
< -1
T 205
0 5 10 0 5 10
6 time [hour] 8 time [hour]
x 10 x 10
C 2 ‘ ‘ D 4
= drift
£ u=15 nm
515 ~ 2
kS g
5] <
3 total §
S compensation g 0
IS) =
< N
3 Y
205 ¥ 22
~
=
<
0 -4
0 5 10 0 5 10
time [hour] time [hour]
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Design of ultra precision systems needs a system level mechatronics approach.

System Architecture
Balancing the design, error budgeting

Metrology

System level metrology, sensors and calibration

Dynamics and Control
Servo contro, vibration isolation and damping

Precision Design principles

Design roles for ultra-precision systems al
D ¢

Thermal
Stability, temperature control, error compensation

Mechanical Electronic / Electrical Pneumatic Hydraulic
Reliability and robustness 2 _
Design for manufacturing, assembly, \ ) < “ n'
Thermal Optical Acoustical Software

Next generation beam line equipment needs these design principles to reach the high dynamic and ultra-precision
performances as required.
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Thank you fo\‘\/our attention
E

Habraken 1199
5507 TB Veldhoven
The Netherlands

www.mi-partners.nl

+31(0)40-2914920
info@mi-partners.nl



