

ESRF Double Crystal Monochromator - Design and Working Modes

Robert Baker & Ludovic Ducotté

Co authors: Julien BONNEFOY, Thomas ROTH, Maxim BRENDIKE, Pascal BERNARD, Hervé GONZALEZ, Ray BARRETT. Gilles BERRUYER, Philippe TARDIEU

Part 1 - Specifications & design - R. Baker

- Target specifications & design philosophy (reminder)
- Main design principles Bragg axis
- Main design principles Crystal cage
- Operating principle
- 1st results

Part 2 - Metrology frame - L. Ducotté

- Design specifications & criteria
- Source of errors Strategy
- Metrology frame concept
- FEA
- Interferometers cyclic errors
- RT System overview

Bragg angle	Units	
Bragg angle range (total)	0	2-80
Bragg angle range (scan)	0	0.1-20
Bragg rotation speed	°/sec	0.001-3
Bragg MIM	µrad	0.5
Bragg accuracy	µrad	4
Bragg bi-dir. repeatability	µrad fwhm	25
Bragg uni-dir. repeatability	µrad fwhm	0.1

Crystal parallelism	Units	
∆RY fixed energy	nrad fwhm	15
ΔRY for $\Delta \theta < 1^{\circ}$	nrad fwhm	15
ΔRY for $\Delta \theta < 5^{\circ}$	nrad fwhm	28
∆RX fixed energy	nrad fwhm	100
ΔRX for $\Delta \theta < 1^{\circ}$	nrad fwhm	100
ΔRX for $\Delta \theta < 5^{\circ}$	nrad fwhm	300

MAIN DESIGN PRINCIPLES – BRAGG AXIS

- Custom angular contact Bragg bearings
- Direct drive torque motor
- In vacuum 4 head encoder

MAIN DESIGN PRINCIPLES – BRAGG AXIS

- No internal flexible LN₂ lines
- No following LN₂ feeder lines

5%

MAIN DESIGN PRINCIPLES – CRYSTAL CAGE

- High stiffness thermalized structure •
- No stacked stages
- 2nd crystal tripod concept •
- Fastjack hybrid actuator •

C: Odeg Bragg

Unit mm/mm Time: 1 20/09/2017 13:44

1.3587e-5

1.1889e-5 1.019e-5 8.492e-6 6.7936e-6 5.0952e-6 3.3968e-6 1.6984e-6

ESRF

MAIN DESIGN PRINCIPLES - ONLINE METROLOGY

FIXED EXIT PERFORMANCE: UNFOCUSED BEAM

- In mode C, the virtual source moves by ~5 x 1.5 beam widths (v x h) over the full angular range
- Locally (over small angles) these values are much reduced

- Scanning X-Ray microscopy
- 2.5 and 3.35 keV (θ_B 52 36°)
- Stacked absorption contrast images of a test object
- No realignment between energies
- Focused Beam moves by < 100 nm over energy

Part 1 - Specifications & design - R. Baker

- Target specifications & design philosophy (reminder)
- Main design principles Bragg axis
- Main design principles Crystal cage
- Operating principle
- 1st results

Part 2 - Metrology frame - L. Ducotté

- Design specifications & criteria
- Source of errors Strategy
- Metrology frame concept
- FEA
- Interferometers cyclic errors
- **RT** System overview

END OF PRESENTATION

THANKS FOR YOUR ATTENTION

Thanks to the DCM project and commissioning team and all those who have contributed to this ambitious project, especially :

Delphine BABOULIN, Ray BARRETT, Pascal BERNARD, Philipp BRUMUND, Gilles BERRUYER, Julien BONNEFOY, Maxim BRENDIKE, Philipp BRUMUND, David BUZNAGET, Hiram CASTILLO MICHEL, José-Maria CLEMENT, Marine COTTE, Yves DABIN, Hervé GONZALEZ, Cyril GUILLOUD, Ricardo HINO, Marc LESOURD, Giovanni MALANDRINO, Keith MARTEL, Olivier MATHON, Manuel PEREZ, Thomas ROTH, Murielle SALOME, Philippe TARDIEU, Remi TUCOULOU, Hans-Peter VAN DER KLEIJ...

ESRF Double Crystal Monochromator - Design and Working Modes

Robert Baker & Ludovic Ducotté

Co authors: Julien BONNEFOY, Thomas ROTH, Maxim BRENDIKE, Pascal BERNARD, Hervé GONZALEZ, Ray BARRETT. Gilles BERRUYER, Philippe TARDIEU

- Part 1 Specifications & design R. Baker
- Target specifications & design philosophy (reminder)
- Main design principles Bragg axis
- Main design principles Crystal cage
- Operating principle
- > 1st results

Part 2 - Metrology frame - L. Ducotté

- Design specifications & criteria
- Source of errors Strategy
- Metrology frame concept
- ➢ FEA
- Interferometers cyclic errors
- RT System overview

From functional to positioning precision specifications :

- Measurement of **Rx + Ry + Tz variations between 1st and 2nd crystal** (2 pairs)
- Supported by crystal cage (= "*Bragg* axis")
- Bragg angle 2→80deg
- 2nd Crystals Tz stroke for a fixed beam exit : ~25mm for the total Bragg angle range
- UHV and radiations
- Eigen Frequencies > 250 Hz, Control BW Fastjack Piezo actuators [0-100]Hz
- Measured parallelism X1 // X2 :
 - Ry < 14nrad , Rx < 100 nrad for a scan of 1deg, and during 24hrs at fixed energy</p>
 - Low sensitivity to deformation of crystal cage
 - Low sensitivity to thermal drift

Scanning mode	, sampling ∆θ/1000
∆rx over 1 deg	100 nrad
∆ry over 1 deg	14 nrad
Δrx over 5 deg	200 nrad
Δ ry over 5 deg	28 nrad
Δrx over 20 deg	500 nrad
Δry over 20 deg	70 nrad
Δtz over 1 deg	0.2 µm
Δtz over 1 to 20 deg	0.4 µm

The European Synchrotro

ESRF

Source of error	Effect on accuracy	Calibration possible ?	Effect on repeat.	Effect on stability	Strategy
Gravity \vec{g} vs Bragg angle θ	Yes	Yes, f(θ)	No	No	Calibration in lab or with X- Rays
Deformation of crystal cage	Yes	Difficult, f(T,t)	Yes	Yes, low frequency	Minimised by design
Thermal drift of metrology frame	Yes	Difficult, f(T,t)	Yes	Yes	Minimised by design
Vibration	No	/	No	Yes, [2-100]Hz	Minimised by design 1 st EF > 250Hz
Interferometers precision	Yes*, linear	Yes, f(θ or d)	Yes*	Yes*	Calibration in lab or with X- Rays

*Data in Attocube datasheet

METROLOGY FRAME CONCEPT

 $\theta \mathbf{r} \equiv \mathbf{r} \mathbf{y}$ $\gamma \mathbf{r} \equiv \mathbf{r} \mathbf{x}$

Page 5 I ESRF Double Crystal Monochromator - Design and Working Modes I MEDSI 2020 - Chicago - 26th - 29th July 2021 I Robert Baker & Ludovic Ducotté

FEA RESULTS ANALYSIS – GRAVITY EFFECT WITH BRAGG AXIS ORIENTATION

itch (Ry)	Δ // Roll (Rx)
0 nrad	23200 nrad

FEA RESULTS ANALYSIS – GRAVITY EFFECT WITH BRAGG AXIS ORIENTATION

Bragg angle [2-78] degd(Ry)/degd(Rx)/deg[0-80]nrad/°[90-420]nrad/°<14</td><100</td>Out of specification on
most of Bragg rangeRepeatable and f(Bragg)
Can be calibrated and
compensated on
RT control system

Deformation induced by thermal expansion of the crystal cage (Al alloy)

Thermal drift of xtal cage should not induce a metrology frame deformation above the specifications for a short scan range (1 deg), i.e a short term drift.

For long term drifts, the xtal cage and the metrology frame are equipped with temperature sensors in order to be able to compensate the parasitic displacement with a TF model.

INTERFEROMETERS CYCLIC ERRORS

Not known at implementation of *Attocube IDS* Interferometers

Non-linear errors cyclic modulo ~765nm $\left(\frac{\lambda}{2}\right)$

Significant effect on 2nd crystals' measured angles during a scan:

- ➤ Rx ~1 µrad
- ≻ Ry ~ 0.15 µrad

Current strategies for improvements :

Improvements by supplier, other suppliers, compensation by our RT system

RT SYSTEM OVERVIEW

ESRF

The European Synchrotron

Crystal parallelism, working modes:

- Mode A : Open-loop actuation, no corrections
- Mode B : Open-loop, correction of repeatable errors of stepper motors
- Mode C : Active real-time control

M. Brendike et al., "ESRF-Double Crystal Monochromator Prototype - Control Concept", presented at the 17th Int. Conf. on Accelerator and Large Experimental Physics Control Systems (ICALEPCS'19), New York, NY, USA, Oct. 2019, paper TUCPL05.

Page 10 I ESRF Double Crystal Monochromator - Design and Working Modes I MEDSI 2020 - Chicago - 26th - 29th July 2021 I Robert Baker & Ludovic Ducotté

CAD MODEL AND ASSEMBLY ACHIEVED

Page 11 I ESRF Double Crystal Monochromator - Design and Working Modes | MEDSI 2020 - Chicago - 26th - 29th July 2021 | Robert Baker & Ludovic Ducotté

END OF PRESENTATION

THANK FOR YOUR ATTENTION

Thanks to the DCM project and commissioning team and all those who have contributed to this ambitious project, especially :

Delphine BABOULIN, Ray BARRETT, Pascal BERNARD, Philipp BRUMUND, Gilles BERRUYER, Julien BONNEFOY, Maxim BRENDIKE, Philipp BRUMUND, David BUGNAZET, Hiram CASTILLO MICHEL, José-María CLEMENT, Marine COTTE, Yves DABIN, Hervé GONZALEZ, Cyril GUILLOUD, Ricardo HINO, Marc LESOURD, Giovanni MALANDRINO, Keith MARTEL, Olivier MATHON, Manuel PEREZ, Thomas ROTH, Murielle SALOMÉ, Philippe TARDIEU, Remi TUCOULOU, Hans-Peter VAN DER KLEIJ,...

