

Design Study of Vacuum System for a 4th Generation Storage Ring in Korea

Taekyun Ha (Pohang Accelerator Laboratory, S. Korea)

July 26, 2021

Contents

Introduction of Korean 4GSR

Vacuum System design

- SR vacuum chamber design
- Handling of SR heat loads
- Dynamic pressure calculation
- RF-bellows, Flange joints and Valves

1

Booster vacuum chamber

*Summary

Overview of Korean 4GSR Project

- Government approval on July 2021
- Objective World-best level light source to support for industrial R&D and pioneering research
- \bigcirc Facility
 - Storage ring Emittance: 58 pm rad Beam energy: 4 GeV Circumference: 800 m Booster Ring with a 200 MeV Linac - Injector - Beam lines 10 beam lines at the 1st stage (out of 40 beam lines)

2

- Period 2021.7 ~ 2027.6 ()
- ~ 1 billion \$ **○ Budget**
- \bigcirc Area 540,000m²
- \bigcirc Location Chung-ju city

Worldwide light sources (emittance vs. circumference)

3

Brilliance (Korean 4GSR vs. PLS-II)

BM: Line(PLS-II), Dot(4GSR) Wiggler: Line(PLS-II), Dot(4GSR) Out vacuum undulator: Line(PLS-II), Dot(4GSR) In vacuum undulator: Line(PLS-II), Dot(4GSR) Cryogenic undulator: Line(4GSR)

4

Introduction of Korean 4GSR

PAL POHANG ACCELERATOR LABORATORY

Design features of Korean 4GSR

High photon beam performance from storage ring

- The best performance be in the range of 10 \sim 30 keV
- Capability to generate photon beam up to 100 keV

Considering well demonstrated technologies for the design

- Off-axis injection with conventional injection scheme
- Balanced technologies for magnet and vacuum systems
- On schedule user service and full performance

Synergy with PLS-II and PAL-XFEL

- Supporting full range of synchrotron radiation application

Main parameter

Parameter	Units	PLS-II	Korean 4GSR
Electron energy	GeV	3	4
Beam current	mA	400	400
Horiz. Emittance	pm	5800	<mark>58</mark> (RB: 39)
Vert. Emittance	pm	~ 58	~ 5.8 (RB: 39)
Bunch length (rms)	ps	20	13 (50 with HC)
Circumference	m	280	800
Harmonic #		470	1332
RF frequency	MHz	500	500
Beam stability @ ID (x/y)	μm	< 4 / 2	< 2.5 / 0.45
Injection mode		Top-up	Top-up

Hybrid multi-bend achromat

Introduction of Korean 4GSR

POHANG ACCELERATOR LABORATORY

Vacuum System Overview

- Required average vacuum pressure is low 10⁻⁹ mbar (CO 1. equivalent).
- PSD gas is pumped by distributed pill-type NEGs and lumped 2. sputter ion pumps.
- 5 ° Inclined side chamber wall absorbs SR photon beams. 3.
- Thermo-mechanical analysis results show that both aluminum and 4. copper alloy are suitable for the SR vacuum chamber material.
- Booster ring vacuum chambers are made of 1 mm-thick stainless 5. steel and pumped with lumped Sputter ion pumps.

6

Vacuum system design

✓ Cross section of the SR vacuum chamber

POHANG ACCELERATOR LABORATORY

SR Vacuum chamber

- Beam chamber cross section is octagon shape (24 mm (H) x 18 mm (V)) except for center bend.
- Vertical aperture of the center bend chamber is 10 mm.
- Eight RF-bellows are used for installation and to reduce stress.
- Two gate valves are located at the end of the arc section.
- Seven sputter ion pumps are installed for noble gas pumping.
- The clearance between the vacuum chamber and the magnets is larger than 0.6 mm.

✓ Clearance

 \checkmark

Vacuum system design

Vacuum chambers of an arc-section

Thermo-mechanical analysis

Handling of SR heat load and chamber material

- Most intense thermal load is 0.77 W/mm² from the center bend.
- Thermal analysis results show that both aluminum and Cu alloy can be used for the vacuum chamber material.

- Aluminum chamber can be fabricated by extrusion, bending and welding.

- Cu alloy chamber can be fabricated by machining of two pieces (top and bottom) and welding.

 Temperature of the sharp edge at a beam exit branch is 68°C (endurable).

Heat load from Center Bends

	В	Bend angle	Total power	Source distance	Inc_angle (H)	Inc_angle (V)	Foot print V-height	Thermal load
Center bend	1.96 T	1.6°	6 kW	2.25 m	2.35°	5°	0.44 mm	0.77 W/mm ²

Results

Material	T _{max} (chamber)	T _{max} (Water char	nnel) σ _{max}	σ_{yield} (Cold worked)
Al6061T6	73°C	46°C	5.4 MPa	214 MPa
OFC Cu (C10100)	58°C	40°C	9 MPa	120 MPa
CuCrZr (C18150)	60°C	41°C	11 MPa	210 MPa
A: Steady-State Thermal Temperature Type: Temperature		ANSYS 2019 R1 Equivalent Stress 2 Type: Equivalent (v	al on-Mises) Stress	ANSYS 2019 R1

Vacuum system design

SR heat load (Synrad+)

4

Vacuum system design

Aluminum chamber

Dynamic pressure calculation

Photon stimulated desorption

- Total SR flux is 4.9E19 ph/sec by Synrad+ simulation
- PSD yield of 1E-6 /ph is used with assumption of 1000 Ah beam dose.
- Total photon stimulated desorption calculated by Synrad is
 3.8E-6 mbar l/s.

4

✓ PSD yields of Aluminum

"A. Mathewson, AIP Conf. Proc. 236 (1), 313 (1991)"

Vacuum system design

PAL POHANG ACCELERATOR LABORATORY

Dynamic pressure calculation

"Pumping speed of pill-type NEG"

Results of H₂ sorption

> Pill NEG have a value of sticking probability about 0.003 \rightarrow 1/5 of a NEG coated chamberroughly.

- > The pressure(P_2) is kept constant $(1 \times 10^{-6} \text{ mbar})$ by injecting the H₂ gas
- > TMP evacuate the gases that can't be pumped by pill NEG slowly.
- Molflow+ was used for calculation of sticking probability from ratio of pressure.
- > Sticking probability: $\alpha \propto P_2/P_1$

Sticking probability is substantially > constant after three additional venting.

"NEG film vs. Pill-type getter"

Туре	NEG film (~1 μm) ^[11]	Pill-type NEG	Note
Facture	Sintering	Compressing	
Activation	200°C, 1 d	180°C, 1 ~ 2 d	
Pumping speed per length	-	Low (< 1/10)	Surf. Area ↓
Sticking probability (α)	0.015 (200°C, 24 h)	<mark>0.003 ~ 0.0037</mark> (180°C, 48 h)	
α (after two additional venting)	0.015 → 0.008	Substantially constant	
Capacity (H ₂)	-	1000×	Thickness个
Disadvantages	Aging after venting	Particle	

Vacuum system design

Dynamic pressure calculation

- H₂ pressure distribution (Molflow+) **
 - 0.0035 is used for the sticking coefficient of pill-type NEG.
 - Average pressure with only pill getter pumps is 5E-9 mbar and 4E-9 mbar with additional 7 sputter ion pumps.
 - Wire heater is inserted into the side channel of the vacuum chamber for 180°C bake-out.

4

Vacuum system design

POHANG ACCELERATOR LABORATORY

RF bellows and flange joints

- BPMs will have short RF-bellows at both ends if the space is available.
- Jointing method between the BPM chamber and the RF-bellows will be studied.
- Conventional flange joints with wide thick RF-spring is considered preferentially and MO-type or VAT-type flange joints are considered as a second option.

SuperKEK^[15]

6

Vacuum system design

Sliding fingers

Booster Vacuum System

- Booster ring vacuum chambers are made of stainless steel with 46 mm (H) x 25 mm (V) aperture.
- Thickness of the stainless steel chamber at the magnet position is 1 mm.
- Three sputter ion pumps for one periodic cell are considered for vacuum pumping and monitoring.

7

Vacuum system design

	Fatigue stress limit @1E7 cycles		
nation	Stainless steel 316L	150 <u>MPa</u>	
	INCONEL 625	690 MPa	
	(b)		

Longitudinal Distance (m)

Summary

Conceptual Design of a Vacuum System for a 4GSR studied in PAL is presented **

- Simple design to handle PSD gas loads with pill-type getter pumps and the inclined side wall to absorb SR
 - Distributed gas pumping and photon absorption \checkmark
 - Pill-type getters can be installed in bent vacuum chambers
- Pumping speed of the commercial pill-type getter is not high enough
- Activation temperature of the pill-type getter is not low enough

Further studies

- Extrusion and bending test for the aluminum chambers
- Improvement of pumping efficiency of the pill-type getters (new materials, 3D-printing, ...)
- Development of Bi-metal welding technique for the BPM chambers (STS-AI)
- NEG coating of 3rd LGB chamber where the pressure is too high

Thank you!

Taekyun Ha (PAL) E-mail: hatae@postech.ac.kr

