

Superconducting undulators - a novel source of radiation for synchrotron and FEL light sources

E. Gluskin – Advanced Photon Source

Outline

- Quick reminder of undulator basics, and why SCU?
 - small period, but strong enough field
- List of engineering challenges for SCU
- SCU magnets
 - magnet cores fabrication
 - winding, chemical cures
- SCU cryostat and cryogenic performance
- SCU magnet measurements
- SCU in the storage versus FEL undulator line
- Bold forecast

Undulator basics - quick reminder

$$\lambda_n = \frac{\lambda_u}{n \cdot 2\gamma^2} \left(1 + \frac{K^2}{2} \right)$$

 $K \cong 0.9\lambda_u H$

 $P_{tot} \propto (\gamma H)^2 \cdot I_e \cdot L_u \qquad \qquad L_u = N\lambda_u$

 $\frac{\text{Number of photons}}{\text{sec, 0.1\% bandwidth}} \propto N \cdot I_e \cdot H^2 \quad \text{(in central cone; K<2)}$

Undulator basics - phase errors

SCU versus in-vacuum cryogenic hybrid ID

Calculated on-axis magnetic fields of two cryogenic permanent magnet undulators (CPMUs), two superconducting undulators (SCUs), and one invacuum undulator (IVU) for a vacuum gap of 4.0 mm for a period length from 8 mm to 30 mm.

Effective K-values for built CPMUs and SCUs

List of engineering challenges in the design and construction of SCU

- High quality of magnetic performance:
 - Machining tolerances of magnet cores and precise, consistent winding of magnets
 - Preserving mechanical tolerances through multiple steps of magnet fabrication
- High reliability in cryogenic performance:
 - "Warm to cold" turnaround time
 - Balance between low capacity of cooling system and demands for precise, repeatable magnet motion
 - Super-protection from incoming radiation
 - Long, precise beam vacuum chamber with high quality surface and minimal "cold to warm" transitions
- Magnetic measurements, aka in-situ QC of SCU

SCU developments in the world

- First SCUs were built in the 70s and 80s : one for FEL experiments at Stanford University and another for HE physics experiments at BINP, Novosibirsk.
- There were several small R&D programs that didn't lead to an operating device.
- Operating SCU at ANKA, Germany: designed and built by Babcock Noell GmbH (currently Bilfinger Noell) – very limited open technical information.
- Operational SCUs at the APS all detailed technical information is available.
- BINP built SCU for Diamond Light Source unorthodox magnet design.
- SCU for SHINE FEL, Shanghai, China undulator design from BINP.

APS SCU main components

Assembled cryostat

SCU cold mass

SCU cryostat consists of vacuum vessel, thermal shield, and a cold mass

- Cooling is provided by 4 cryocoolers
- Closed-loop LHe circuit
- LHe is contained in a tank connected with the magnet
- Two NbTi-based magnets form SCU
- NbTi magnets are cooled indirectly with LHe passing through channels in the magnet iron cores
- Beam chamber is thermally isolated from the magnet and cooled independently

Magnet - beam vacuum chamber assembly

Magnet cores and beam vacuum chamber

SCU magnet's core and winding process

Precise grooves for controlled wire location

SCU magnet's assembly

Extended Gap Spacer

Assembled SCU magnet

Magnet core after epoxy coating

Phase errors versus SCU magnet current

Helical SCU assembly

Cold mass: LHe tank and mold with the magnet

Cold mass is inserted in the cryostat

Thermal and electrical links

Diagram of APS SCU cryo-circuits

Cooling capacity of 4 Sumitomo RDK415D cryocoolers at ~ 20° K: 200 – 60 W Cooling capacity of 4 Sumitomo RDK415D cryocoolers at ~ 4° K: 6 – 2 W

> Typical thermal load on 20⁰K circuit is < 50W Typical thermal load on 4⁰K circuit is ~ 1W

Screenshot of temperature readings

- Modeled/numerically calculated temperature map is in quite good agreement with measured one
- Cool down time is about 30 hours ۲
- Quench recovery time (ready for beam) is <1 hr ۲

Cold Mass Suspension and Alignment System; Portable Cryo-scanner

- Cold mass is suspended on invar rods
- Measures displacement of cold mass inside a cryostat through glass viewports
- Kelvin kinematic couple interfaces *Cryoscanner* device with cryostat vessel at multiple locations
- CCD laser displacement sensor (LDS) is mounted to a vertical linear translation stage
- LDS laser is scanned across V-block target surface to acquire 2-D coordinates (X,Y)
- Cold mass position is adjustable with <10 μm resolution and reproducibility

Measuring SCU magnetic field

- Warm sensor concept (by Budker Institute, Russia):
 - Metallic guide tube is stretched inside the beam chamber cold bore
 - Guide tube is heated by the current passing through it
 - Guide tube bore is open to atmosphere
- Sensor (Hall probe or wire coil) operates at room temperature
 - Hall probe:
 - 3-axis commercial Hall sensor measures By, Bx, Bz components
 - Attached to fiber tube and driven by precise 3.5-m linear stage
 - Bz- field is used to measure vertical position of the sensor
- Stretched wire coils:
 - Rectangular, delta, and 'figure- 8' coils stretched between two linear and rotation stages
 - Measure static and dynamic field integrals and multipole components

Warm-sensor concept

SCU horizontal measurement system

Magnet Measurement System for a long SCU

- New design is based on experience of using a 2-m-long measurement system for the APS SCUs:
 - a proven concept of a warm guiding tube
 - Hall probe carriage is moved with a flexible linear encoder scale
 - does not require a long holder attached to a long travel linear stage
- System is fabricated, assembled and tested; it's being used to measure a wellcharacterized HPMU

SCU effects on the electron beam

- SCU field integrals satisfy the physics specifications
- SCU quench produces only small beam motion and does not cause loss of the beam
- Position of the SCU vacuum chamber is stable and does not require realignment
- SCU cryocooler vibrations do not affect beam stability
- SCU operation does not affect the beam lifetime

-0.2

0.5

1.0

chamber sensor position (m)

1.5

> -0.4

Vertical-field integrals of initial correction as measured using the stored beam, before final beambased adjustments. The first integral is on the left and the second integral is on the right [1].

Effect of induced quench on the beam orbits at all the insertion devices. Left panel: Slow orbit correction only. Right panel: Fast orbit correction (FB) turned on [1].

Measured vertical position of the vacuum chamber inside the cryostat over a one-year period using the beam-based method [1,2].

8/2016

APS SCUs operations statistics

- SCU0, SCU18-1, and SCU18-2 have been essentially transparent to the APS SR beam
- Most quenches occur during unplanned beam dumps
- SCU18-1/18-2 quenches decreased dramatically after beam abort system added Jan 2016

		SCU0 and SCU18-2				SCU18-1				HSCU			
Year	APS delivered	Operation	Down	Quench	Avail. %	Operation	Down	Quench	Avail. %	Operation	Down	Quench	Avail. %
2013	4871 h	4189 h	20 h	<u> 34 + 3</u>	99.5	-	-	-	-	-	-	-	-
2014	4926 h	4391 h	174 h [1]	32 + <mark>2</mark>	96.2	-	-	-	-	-	-	-	-
2015	4940 h	4834 h	0 h	26 + 1	100	3059 h [2]	0.1 h	5 + <mark>0</mark>	99.99	-	-	-	-
2016	4941 h	4647 h [3]	0 h	<i>9</i> + <mark>0</mark>	100	4585 h	0.3 h	<i>11</i> + 1	99.99	-	-	-	-
2017	4840 h	4756 h	0 h	8+1	100	4818 h	0.75 h	<u>13 + 2</u>	99.98	-	-	-	-
2018	4853 h	4755 h	5 h	<i>11</i> + 1	99.9	4710 h	0.59 h	14 + <mark>2</mark>	99.99	751.5 h	0 h	<i>0</i> + 0	100
2019	4899 h	3064 h	4.88 h	<i>9</i> + 2	99.8	4872 h	0.01 h	5 + <mark>0</mark>	99.99	1106.2 h	0 h	<i>0</i> + 0	100
2020	4874 h	3624 h	0 h	7+1	100	3822 h	0.48 h	5 + <mark>0</mark>	99.99	421.9 h	84.5 h	0 + <mark>0</mark>	83.3
2021 [4]	2306 h	2256 h	0 h	3+0	100	2295 h	0.01 h	2 + 0	99.99	245.8	0 h	0 + 0	100
Total	41450 h	36516 h	203.9 h	142 + 11	99.44	28161 h	2.24 h	55 + <mark>5</mark>	99.99	2525.5 h	84.5 h	<i>0</i> + 0	96.76

e-beam has never been lost due to self-quenches

Red = beam dump-induced quench

Blue = non-beam dump, possible self-induced quench

November: Partial loss of one cryocooler capacity
Installed in May; operated May – Dec. 2015
SCU18-2 replaced SCU0 in Sep.; SCU0 3310 h, SCU18-2 1337 h

[4] January 2021 through June 2021

SCUs for APS Upgrade project

- SCU magnet assembly :
 - up to 1.9-m-long core with a channel for LHe
 - proven winding scheme
- Cryostat consists of:
 - 4.8-m-long 20"-diameter vacuum vessel
 - off-the-shelf vacuum components
 - three thermal stages (4K 20K 40K)
 - 6 cryocoolers (two types)

Completed 1.9-m-long core

APS-U SCU #1 is being assembled

Cryostat design model

Cryostat vacuum vessel

LHe tank

Superconductor wires for undulators

- NbTi
 - Predictable, controlled characteristics; wellestablished handling procedures.

• Nb₃Sn

 Requires exposure to high T~650°C to become SC; wire becomes brittle, needs special care to handle.

- What level of field enhancement, field quality and reliability can be achieved?

- Operation at high T
- Ready to wind
- Ic uniformity
- Length is limited

ANL-FNAL-LBNL collaboration on Nb₃Sn SCU for APS

- Goal: Develop, build, and install on the APS ring a Nb₃Sn undulator (in a modified SCU0 cryostat) a year before the APS-U 'dark time' starts
- Collaboration with FNAL and LBNL
- Project funded by ADRP at BES DOE
- Status:
 - R&D phase almost completed
 - 1.1-m-long magnets are fabricated
 - The cryostat is under preparation

84 mm

Quench training profile of individual cores

0.5-m-long Nb₃Sn SCU prototype did not require any training to reach the design current in 2^{nd} cooldown and demonstrated excellent training memory.

Excitation curve of 0.5-m-long Nb₃Sn SCU

The performance exceeded the design current and undulator field of ~850 A and 1.2 T, respectively. The magnetic field simulations agreed well with the measured field values. Nb₃Sn SCU offers at least 20% undulator field increase compared to a NbTi SCU with the same magnetic gap (9.5 mm) and period length (18 mm).

SCUs versus HPMUs for LCLS-II

- SCUs increase the high X-ray energy reach for XFELs; Example: LCLS Cu linac with SCU can reach 48 keV
- Possibly less susceptible to radiation damage, temperature drifts
- Cryo-pumped e-beam pipes provide excellent vacuum
- Combined with the high-repetition-rate SRF linac, SCU XFELs will increase the average coherent X-ray flux

10
ray pulse energy (mJ)
× 0.01
6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
Photon energy (keV)

LCLS-II-HE can produce 2-mJ pulse energy with low emittance e- beams and SCUs

Parameter	Value	Factor driving requirement			
Period length (mm)	21	Design Choice			
Gap (mm)	8	Design Choice			
B ₀ @ full current	> 1.67 T	Matching with HXR FEL wavelength			
$\Delta B/B_0$ variation along undulator	± 5.5 ×10 ⁻⁴	FEL requirement			
∫B _{x,y} dz	< 50 µT-m	FEL requirement			
∬B _{x,γ} dz²	< 100 µT-m²	FEL requirement			
Phase Shake (rms)	< 5°	FEL requirement			

SCU performance tests at the LCLS-II

SLAC and Argonne National Laboratory started this R&D project with the goal of building and testing the SCU's performance at the LCLS. The SCUs will be installed on the Hard X-ray Undulator beamline to test the alignment procedures and to measure FEL gain at the SCU module.

The SCU FEL R&D project is funded by ADRP of the DOE Office of Science

Outlook: remaining SCU engineering challenges

- Optimizing NbTi magnet design
- Establishing optimized design and reliable fabrication technology of Nb₃Sn magnets
- Creating novel magnet designs
- Significantly reducing cost of magnet fabrication
- Creating optional cryostat designs
- Optimizing mechanical and optical systems for precise alignment of "cold FEL SCU components"
- Furthering advancements in magnetic measurements system
- Establishing industrial production of SCUs or SCUs components

Acknowledgments

- APS SCU developments were successfully conducted by the APS SCU team: Y. Ivanyushenkov, M. Kasa, S. Bettenhausen, C. Doose, J. Fuerst, Q. Hasse, I. Kesgin, Y. Shiroyanagi and H. Hu. They were supported by technical staff of MD Group led by J. Xu.
- Engineering design and SCUs construction was supported by APS engineers and designers: A. Anliker, E. Trakhtenberg,
 D. Skiadopoulos, S. Shorser. Optical alignment system was developed and built by W. Jansma. Many APS ASD and AES technical staff contributed to construction and operation of SCUs.
- Significant contributions in the engineering design of the first APS SCU cryostat were made by BINP engineer V. Syrovatin and lead scientist N. Mezentsev.