

Cryogenic Systems for Optical Elements Cooling at Sirius/LNLS

M. Saveri Silva*, F. R. Lena, J. H. Rezende, A. F. M. Fontoura, M. P. Calcanha, B. A. Francisco, L. M. Volpe, G. L. M. P. Rodrigues, L. M. Kofukuda, G. Z. B. L. Moreno, H. C. N. Tolentino, L. Sanfelici, F. E. P. Meneau,

Relief

valve

Pressure

gauge

- ☐ Solenoid valves for filling control
- ☐ Satisfactory results when keeping primary vessel between 80~100%, filled @ 2.5 L/min
- ☐ LN2 transfer losses of 3% was observed
- ☐ Effectively running for several months

Pressure

building

regulator

Rupture

disk

- ☐ Active pressure control by solenoids during filling
- ☐ Passive pressure control allov temperature and dynamic stability of the optics

Secondary

LN2 cylinders

Emergency

button

For the cryostat outlet, the best insulation performance against condensation was achieved when using a 3D printed part in which the nitrogen flow surrounded by a cylindrical channel through which there is a laminar flow of compressed air.

Optics	Load	Consumption [L/h]		
	[W]	Theor.	Primary	Second.
CNB – M1+XDU	60	1.4	1.6	2.0
CNB – M2+SSA	20	0.5	1.1	1.4
CNB - 4CM	26	0.6	0.7	1.1
CAT - M1	16	0.4	1.55	1.64
CAT - 4CM	50	1.1	1.55	1.60
CAT – M2	20	0.5	1.66	1.71

☐ Oxygen ratio inside the hutches comparable to hutches in which there is no gaseous nitrogen release.

References

[1] L. M. Volpe, et al. "Performance validation of the thermal model for optical components". Presented at MEDSI 2020, Chicago, USA, this conference. [2] M. Saveri Silva, et al "Thermal management and crystal clamping concepts for the new high-dynamics DCM for Sirius". Presented at MEDSI 2016, Barcelona [3] R. R. Geraldes, et al. "The design of exactly-constrained X-Ray mirror systems for Sirius". Presented at MEDSI 2018, Paris

[4] Lena, F. et al. "Copper Braid Heat Conductors for Sirius Cryogenic X-Ray Optics". Presented at MEDSI 2020, Chicago, USA, this conference. [5] Icons designed by Freepik from Flaticon.com

