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Abstract 
Silicon crystals have been widely used for x-ray mono-

chromators. It is an anisotropic material with temperature-
dependent properties. Values of its thermal properties from 
cryogenic to high temperature are available in the literature 
for expansion, conductivity, diffusivity, heat capacity, but 
neither elastic constants nor Young’s modulus. X-ray mon-
ochromators may be liquid-nitrogen cooled or water 
cooled. Finite Element Analysis (FEA) is commonly used 
to predict thermal performance of monochromators. The 
elastic constants and Young’s modulus over cryogenic and 
high temperature are now collected and derived from liter-
ature, with the purpose of assisting in providing accurate 
FEA predictions.  

INTRODUCTION 
Silicon single crystals have been widely used for x-ray 

monochromators [1], in addition to application in MEMS 
fabrication, both as a substrate for compatibility with sem-
iconductor processing equipment and as a structural mate-
rial for MEMS devices [2-4]. It is an anisotropic material 
with temperature-dependent properties, such as thermal 
conductivity [5, 6], thermal expansion coefficients [7-9], 
and elastic constants [10] or Young’s modulus [11, 12]. At 
room temperature, Young’s modulus varies from 130 GPa 
in the <100> directions to 190 GPa in the <111> directions.   

Burenkov et al. [13] and Kury et al. [14] studied the tem-
perature dependence of Young’s modulus E<ijk> for Si and 
Ge. Polynomial expressions for the dependence on temper-
ature between room temperature and 1000˚C of the bi-axial 
Young’s modulus 𝐸ழ௜௝௞வ/ሺ1 െ 𝑣ሻ, with 𝑣 the Poisson's ra-
tio, were developed. Vanhellemont et al. reported temper-
ature-dependent Young’s modulus of silicon by means of 
impulse excitation technique [12]. The data E<ijk> along 
<100>, <110>, and <111> directions are available from 
room temperature to 1400˚C.  

McSkimin measured elastic constants C11, C12, C44 of sil-
icon single crystal at low temperatures by means of ultra-
sonic waves [10]. The data are valid from 78 K to 300 K.  

This report derives Young’s modulus at low tempera-
tures from elastic constants C11, C12, C44 of silicon single 
crystal in ref. [10], and elastic constants at high tempera-
tures from Young’s modulus in ref. [12]. Therefore, com-
plete sets of Young’s modulus and elastic constants are pro-
vided from -196˚C up to 1400˚C, or ~78 K to ~1673 K. 
Further, users may derive temperature-dependent Young’s 
modulus or elastic constants at any arbitrary orientations. 

ELASTIC CONSTANTS 
The stiffness coefficients 𝐶௜௝௞௟ and the compliance coef-

ficients 𝑆௜௝௞௟ are defined as the proportionality constants 
between stress σ and strain ε tensors in the form of gener-
alized Hooke’s law:  

𝜎௜௝ ൌ 𝐶௜௝௞௟𝜀௞௟, and 𝜀௜௝ ൌ 𝑆௜௝௞௟𝜎௞௟. (1)  

In the Coordinate System of a Cubic Crystal   
Figure 1 shows the coordinate system with “X,Y,Z”-axes 

in the <100>,<010>, and <001> directions of a cubic struc-
ture. Because of its orthogonality, this coordinate system is 
actually a Cartesian coordinate system. An arbitrary orien-
tation <hkl> rotating with respect to those three directions 
is also illustrated.  

 
Figure 1: Illustration of coordinate system transformation 
with respect to the primary directions of a cubic structure. 

For a cubic crystal such as silicon, the combination of 
cubic symmetry and the equivalence of the shear condi-
tions enables specifying the fourth rank tensor with only 
three independent elastic constants. With respect to a spe-
cific basis that is commonly given for the <100> directions 
of the cubic structure, these tensors are given as [15, 16]: 
𝜎௜௜ ൌ 𝐶ଵଵ𝜀௜௜ ൅ 𝐶ଵଶ൫𝜀௝௝ ൅ 𝜀௞௞൯ , and 𝜎௜௝ ൌ 𝐶ସସ𝜀௜௝ .        ሺ2ሻ 

The stiffness matrix can be shortened as 𝐶௣௤ or:  

       𝐶 ൌ

⎣
⎢
⎢
⎢
⎢
⎡
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଶ
𝐶ଵଶ 𝐶ଵଵ 𝐶ଵଶ
𝐶ଵଶ 𝐶ଵଶ 𝐶ଵଵ

𝐶ସସ
𝐶ସସ

𝐶ସସ⎦
⎥
⎥
⎥
⎥
⎤

. (3) 

The compliance matrix can be written in a similar form, 
which is the inverse of the stiffness matrix. The second-
order elastic compliances 𝑆௣௤ can be expressed as:  

 ___________________________________________  
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𝑆ଵଵ ൌ ሺ𝐶ଵଵ ൅ 𝐶ଵଶሻ/ሾሺ𝐶ଵଵ െ 𝐶ଵଶሻሺ𝐶ଵଵ ൅ 2𝐶ଵଶሻሿ, 
𝑆ଵଶ ൌ െ𝐶ଵଶ/ሾሺ𝐶ଵଵ െ 𝐶ଵଶሻሺ𝐶ଵଵ ൅ 2𝐶ଵଶሻሿ, 
𝑆ସସ ൌ 1/𝐶ସସ.                         (4) 

To obtain Eq. (4), the following relation is applied [17]:  
2𝐶ଵଵሺ𝐶ଵଵ ൅ 𝐶ଵଶሻ ൌ ሺ𝐶ଵଵ െ 𝐶ଵଶሻሺ𝐶ଵଵ ൅ 3𝐶ଵଶሻ  (5) 

In an Arbitrary Orientation of a Cubic Crystal   
In an arbitrary orientation <hkl> as shown in Fig. 1, the 

corresponding elastic constants 𝐶௣௤′ and 𝑆௣௤′ can be calcu-
lated through a transformation [11, 18]. The results of such 
a transformation are listed in Table 1. The transformation 
from the crystal axes 𝑥௜ (unprimed) to the arbitrary system 
𝑥௜" (primed) is expressed by:  

𝑥௜
ᇱᇱ ൌ 𝑙௜𝑥ଵ ൅ 𝑚௜𝑥ଶ ൅ 𝑛௜𝑥ଷ,   𝑖 ൌ 1,2,3  (6) 

with 𝑙,𝑚,𝑛 being the direction cosines of the rotational 
transformation. 

Table 1: Stiffness and Compliance Coefficients of Trans-
formation for Rotated Axes in Cubic Crystals 

Coefficient transformation1  
Analogous2  
coefficients 

𝐶ଵଵ′ ൌ 𝐶ଵଵ ൅ 𝐶௖൫𝑙ଵ
ସ ൅ 𝑚ଵ

ସ ൅ 𝑛ଵସ െ 1൯ 𝐶ଶଶ′, 𝐶ଷଷ′ 

𝐶ଵଶ′ ൌ 𝐶ଵଶ ൅ 𝐶௖൫𝑙ଵ
ଶ𝑙ଶ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଶ

ଶ ൅ 𝑛ଵଶ𝑛ଶଶ൯ 𝐶ଵଷ′, 𝐶ଶଷ′ 

𝐶ଵସ′ ൌ 𝐶௖൫𝑙ଵ
ଶ𝑙ଶ𝑙ଷ ൅ 𝑚ଵ

ଶ𝑚ଶ𝑚ଷ ൅ 𝑛ଵଶ𝑛ଶ𝑛ଷ൯ 𝐶ଵହ′, 𝐶ଵ଺′, 𝐶ଶସ′, 
𝐶ଶହ′ 𝐶ଶ଺′, 𝐶ଷସ′, 
𝐶ଷହ′, 𝐶ଷ଺′ 𝐶ସହ′, 
𝐶ସ଺′, 𝐶ହ଺′ 

𝐶ସସ′ ൌ 𝐶ସସ ൅ 𝐶௖൫𝑙ଶ
ଶ𝑙ଷ

ଶ ൅ 𝑚ଶ
ଶ𝑚ଷ

ଶ ൅ 𝑛ଶଶ𝑛ଷଶ൯ 𝐶ହହ′, 𝐶଺଺′ 

𝑆ଶଶ′ ൌ 𝑆ଵଵ ൅ 𝑆௖൫𝑙ଶ
ସ ൅ 𝑚ଶ

ସ ൅ 𝑛ଶସ െ 1൯ 𝑆ଵଵ′, 𝑆ଷଷ′ 

𝑆ଵଷ′ ൌ 𝑆ଵଶ ൅ 𝑆௖൫𝑙ଵ
ଶ𝑙ଷ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଷ

ଶ ൅ 𝑛ଵଶ𝑛ଷଶ൯ 𝑆ଵଶ′, 𝑆ଶଷ′ 

𝑆ଵସ′ ൌ 2𝑆௖൫𝑙ଵ
ଶ𝑙ଶ𝑙ଷ ൅ 𝑚ଵ

ଶ𝑚ଶ𝑚ଷ ൅ 𝑛ଵଶ𝑛ଶ𝑛ଷ൯ 𝑆ଵହ′, 𝑆ଵ଺′, 𝑆ଶସ′, 
𝑆ଶହ′ 𝑆ଶ଺′, 𝑆ଷସ′, 
𝑆ଷହ′, 𝑆ଷ଺′ 

𝑆ହ଺′ ൌ 4𝑆௖൫𝑙ଵ
ଶ𝑙ଶ𝑙ଷ ൅ 𝑚ଵ

ଶ𝑚ଶ𝑚ଷ ൅ 𝑛ଵଶ𝑛ଶ𝑛ଷ൯ 𝑆ସହ′, 𝑆ସ଺′ 

𝑆ହହ′ ൌ 𝑆ସସ ൅ 4𝑆௖൫𝑙ଵ
ଶ𝑙ଷ

ଶ ൅ 𝑚ଵ
ଶ𝑚ଷ

ଶ ൅ 𝑛ଵଶ𝑛ଷଶ൯ 𝑆ସସ′, 𝑆଺଺′ 
Note: 
1. 𝐶௜௝′ ൌ 𝐶௝௜′,                              𝑆௜௝′ ൌ 𝑆௝௜′;                                            

𝐶௖ ൌ 𝐶ଵଵ െ 𝐶ଵଶ െ 2𝐶ସସ,         𝑆௖ ൌ 𝑆ଵଵ െ 𝑆ଵଶ െ
ଵ

ଶ
𝑆ସସ 

2. The subscript on a direction cosine, as well as on a coefficient, 
represents two subscripts: (111, 222, 333, 612, 513, 
423). 

YOUNG’S MODULUS, SHEAR  
MODULUS, AND POISSON’S RATIO 

Young’s modulus is defined as a proportional constant of 
stress over its corresponding strain of a normal defor-
mation, while the shear modulus is defined as stress over 
the corresponding strain of a transverse deformation: 

𝐸௜ ൌ 𝜎௜/𝜀௜ ,  𝑖 ൌ 1,2,3                   
𝐺௜ ൌ 𝜎௜/𝜀௜ ,  𝑖 ൌ 4,5,6 .  (7) 

The Poisson’s ratio is defined as  
 𝑣௜௝ ൌ െ𝜀௝/𝜀௜,  𝑖, 𝑗 ൌ 1,2,3, 𝑖 ് 𝑗.  (8) 
By comparing the definitions of these moduli and stiffness, 
it can readily be shown that  
𝐸௜ሺ𝑜𝑟 𝐺௜ሻ ൌ 1/𝑆௜௜, and 𝑣௜௝ ൌ െ𝑆௝௜/𝑆௜௜.  (9) 

The Young’s modulus 𝐸௛௞௟ can be calculated from the 
general formulae for cubic crystal as [15, 16, 19]:  

ଵ

ா೓ೖ೗
ൌ 𝑆ଵଵ െ 2 ቀ𝑆ଵଵ െ 𝑆ଵଶ െ

ଵ

ଶௌరర
ቁ ሺ𝑙ଶ𝑚ଶ൅𝑚ଶ𝑛ଶ ൅ 𝑙ଶ𝑛ଶሻ. 

(10)  

The corresponding Poisson’s ratio and shear modulus in 
the cubic configuration can be expressed as:  

  𝑣ఈఉ ൌ
ௌభమାቀௌభభିௌభమି

భ
మೄరర

ቁ൫௟ഀ
మ௟ഁ

మା௠ഀ
మ௠ഁ

మା௡ഀమ௡ഁ
మ൯

ௌభభିଶቀௌభభିௌభమି
భ

మೄరర
ቁቀ௟ഀ

మ௠ഀ
మା௠ഀ

మ௡ഀ
మ
ା௟ഀ

మ௡ഀమቁ
  (11) 

             𝐺௜௝ ൌ 1/𝑆௜௝′, (𝑆௜௝
ᇱ  as shown in Table 1)  (12) 

with α and β being the two orthogonal directions, and 𝑙ఊ, 
𝑚ఊ, 𝑛ఊ are the directional cosines of the angles between 
the γ direction and basis axes.  

By substituting Eq. (4) into Eq. (10), one obtains  

        
ଵ

ா೓ೖ೗
ൌ

஼భభା஼భమ
ሺ஼భభି஼భమሻሺ஼భభାଶ஼భమሻ

െ 2 ቀ
஼భభା஼భమ
஼భభି஼భమ

െ

                      
஼రర
ଶ
ቁ ሺ𝑙ଶ𝑚ଶ൅𝑚ଶ𝑛ଶ ൅ 𝑙ଶ𝑛ଶሻ.  (13) 

Young’s moduli in the <100>, <110>, and <111> crystallo-
graphic directions can be derived as [20]:   
𝐸ሾଵ଴଴ሿ ൌ ሺ𝐶ଵଵ െ 𝐶ଵଶሻሺ𝐶ଵଵ ൅ 2𝐶ଵଶሻ/ሺ𝐶ଵଵ ൅ 𝐶ଵଶሻ, 

𝐸ሾଵଵ଴ሿ ൌ 2/ ቄ
஼భభ

ሺ஼భభି஼భమሻሺ஼భభାଶ஼భమሻ
൅

ଵ

ଶ஼రర
ቅ, 

𝐸ሾଵଵଵሿ ൌ 3/ ቀ
ଵ

஼భభାଶ஼భమ
൅

ଵ

஼రర
ቁ.     (14) 

Inversely stiffness coefficients 𝐶ଵଵ, 𝐶ଵଶ, and 𝐶ସସ can be 
obtained from Eq. (14).  

TEMPERATURE-DEPENDENT ELASTIC 
CONSTANTS AND YOUNG’S MODULUS 
The temperature-dependent Young’s modulus of silicon  

E<100>, E<110>, and E<111> are available from room temper-
ature to 1400˚C [12]. The corresponding stiffness coeffi-
cients C11, C12, and C44 can be calculated with Eq. (14) if 
one is interested in the coefficients at high temperature.  

Data of measured stiffness coefficients C11, C12, and C44 
of silicon single crystal are valid from 78 K to 300 K [10]. 
The data can be converted to the Young’s modulus, Pois-
son’s ratio, and shear modulus by using Eqs. (4, 10-12) 
when needed. For example, ANSYS Workbench takes tem-
perature dependent data of orthogonal elasticity in terms of 
Young’s modulus, Possion’s ratio, and shear modulus.  

By combining data at low and high temperatures, Fig. 2 
shows Young’s modulus E<100>, E<110>, and E<111> from 4 
to 1400 K, and Fig. 3 shows stiffness coefficients C11, C12, 
and C44 from 4 to 1400 K. The data below 80 K are artifi-
cial for curve fitting purposes.  

 

 
Figure 2: Young's modulus of silicon single crystal. 
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Figure 3: Stiffness coefficients of silicon single crystal. 

CONCLUSION 
For cubic crystals such as silicon, conversion equations 

between elastic constants and Young’s modulus along crys-
tallography axes are summarized. Based on the available 
amount of measured data of Young’s modulus from room 
temperature to melting temperature and stiffness coeffi-
cients from room temperature to cryogenic temperature, 
complete sets of data of both Young’s modulus and stiff-
ness coefficients from cryogenic temperature to 1400 K are 
presented.   
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