Paper | Title | Page | |||
---|---|---|---|---|---|
MOPB06 | Installation and Commissioning of the Exactly-Constrained X-Ray Mirror Systems for Sirius/LNLS | 33 | |||
|
|||||
Funding: Ministry of Science, Technology and Innovation (MCTI) Innovative exactly-constrained thermo-mechanical de-signs for beamline X-ray mirrors have been developed since 2017 at the 4th-generation Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). Due to the specific optical layouts of the beamlines, multiple systems cover a broad range of characteristics, including: power management from a few tens of mW to tens of W, via passive room-temperature operation, water cooling or indirect cryocooling using copper braids; mirror sizes ranging from 50 mm to more than 500 mm; mirrors with single or multiple optical stripes, with and without coat-ings; and internal mechanics with one or two degrees of freedom for optimized compromise between alignment features, with sub-100-nrad resolution, and high dynamic performance, with first resonances typically above 150 Hz. Currently, nearly a dozen of these in-house mirror systems is operational or in commissioning at 5 beam-lines at Sirius: MANACÁ, CATERETÊ, CARNAÚBA, EMA and IPÊ, whereas a few more are expected by the end of 2021 with the next set of the forthcoming beam-lines. This work highlights some of the design variations and describes in detail the workflow and the lessons learned in the installation of these systems, including: modal and motion validations, as well as cleaning, as-sembling, transportation, metrology, fiducialization, alignment, baking and cooling. Finally, commissioning results are shown for dynamic and thermal stabilities, and for optical performances. |
|||||
![]() |
|
||||
![]() |
Poster MOPB06 [1.959 MB] | ||||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-MOPB06 | ||||
About • | paper received ※ 12 August 2021 paper accepted ※ 13 October 2021 issue date ※ 07 November 2021 | ||||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||||
WEPB13 | Design and Commissioning of the TARUMÃ Station at the CARNAÚBA Beamline at Sirius/LNLS | 292 | |||
|
|||||
Funding: Ministry of Science, Technology and Innovation (MCTI) TARUMÃ is the sub-microprobe station of the CARNAÚBA (Coherent X-Ray Nanoprobe Beamline) beamline at Sirius Light Source at the Brazilian Synchrotron Light Laboratory (LNLS). It has been designed to allow for simultaneous multi-analytical X-ray techniques, including diffraction, spectroscopy, fluorescence and luminescence and imaging, both in 2D and 3D. Covering the energy range from 2.05 to 15 keV, the fully-coherent monochromatic beam size varies from 550 to 120 nm after the achromatic KB (Kirkpatrick-Baez) focusing optics, granting a flux of up to 1e11ph/s/100mA at the probe for high-throughput experiments with flyscans. In addition to the multiple techniques available at TARUMÃ, the large working distance of 440 mm after the ultra-high vacuum (UHV) KB system allows for another key aspect of this station, namely, a broad range of decoupled and independent sample environments. Indeed, exchangeable modular setups outside vacuum allow for in situ, in operando, cryogenic and/or in vivo experiments, covering research areas in biology, chemistry, physics, geophysics, agriculture, environment and energy, to name a few. An extensive systemic approach, heavily based on precision engineering concepts and predictive design, has been adopted for first-time-right development, effectively achieving altogether: the alignment and stability requirements of the large KB mirrors with respect to the beam and to the sample*; and the nanometer-level positioning, flyscan, tomographic and setup modularity requirements of the samples. This work presents the overall station architecture, the key aspects of its main components, and the first commissioning results. * G.B.Z.L. Moreno et al. "Exactly constrained KB Mirrors for Sirius/LNLS Beamlines: Design and Commissioning of the TARUMÃ Station Nanofocusing Optics at the CARNAÚBA Beamline", presented at MEDSI’20, paper TUOB01, this conference. |
|||||
![]() |
Poster WEPB13 [2.936 MB] | ||||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2020-WEPB13 | ||||
About • | paper received ※ 25 July 2021 paper accepted ※ 28 September 2021 issue date ※ 30 October 2021 | ||||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||||