JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.

Title Engineering Challenges in BioSAXS for Australian Synchrotron
  • S. Venkatesan, L. Barnsley, A.J. Clulow, A.P. Mazonowicz, C.J. Roy
    AS - ANSTO, Clayton, Australia
  • G. Conesa-Zamora, R. Grubb, H. Hamedi, B. Jensen, C.S. Kamma-Lorger, V.I. Samardzic-Boban
    ANSTO, Menai, New South Wales, Australia
Abstract The Biological Small Angle X-Ray Scattering (BioSAXS) beamline is the third beamline designed, developed and soon to be installed as part of BRIGHT Program at the Australian Synchrotron. The BioSAXS beamline will allow highly radiation sensitive samples to be studied at high flux. The beamline will offer increased efficiency, and data quality, for all liquid phase scattering experiments, allowing measurement of new and novel samples, and experiments, that otherwise would not be possible. The BioSAXS beamline will accommodate a wide range of experiments by offering a q-range of ~ 0.001 - 4 Å-1 and an optical design optimized for high flux (~5x10¹⁴ ph/s) x-rays. At this flux rate, BioSAXS will offer users one of the highest flux beamlines in the world. To achieve this, the beamline will use a superconducting undulator insertion device, double multilayer monochromator, and vertical and horizontal bending mirrors, providing flexibility in optical configurations. The beamline will primarily collect data in a fully unfocussed mode. BioSAXS will also be able to achieve a fully focused and a vertically focussed beam. This subsequent variation in the beam position at sample is accommodated through fully automated motion in 5 axes at the in-vacuum detector stage and 4 axes in the sample table. The design of these components allows smooth transition in camera lengths and improved signal to noise ratio. This paper presents the various engineering challenges in this high flux design, including thermal management of critical components, design developments to accommodate the various operational modes and various stages of the Photon Delivery System and Experimental Station components. The paper aims to present details of design, FEA results and approaches taken to solve problems.
Paper download WEOB01.PDF [1.012 MB / 5 pages]
Slides download WEOB01_TALK.PDF [1.934 MB]
Export download ※ BibTeX LaTeXText/WordRISEndNote
Conference MEDSI2020
Series Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (11th)
Location Chicago, IL, USA
Date 24-29 July 2021
Publisher JACoW Publishing, Geneva, Switzerland
Editorial Board Yifei Jaski (ANL, Lemont, IL, USA); Patric Den Hartog (ANL, Lemont, IL, USA); Kelly Jaje (ANL, Lemont, IL, USA); Volker R.W. Schaa (GSI, Darmstadt, Germany)
Online ISBN 978-3-95450-229-5
Online ISSN 2673-5520
Received 13 August 2021
Accepted 29 October 2021
Issue Date 08 November 2021
DOI doi:10.18429/JACoW-MEDSI2020-WEOB01
Pages 224-228
Creative Commons CC logoPublished by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI.