JACoW logo

Joint Accelerator Conferences Website

The Joint Accelerator Conferences Website (JACoW) is an international collaboration that publishes the proceedings of accelerator conferences held around the world.


https://doi.org/10.18429/JACoW-MEDSI2020-TUOB02
Title Development of a Passive Tuned Mass Damper for Ultra-High Vacuum Beamline Optics
Authors
  • F. Khan, D. Crivelli, J.H. Kelly, A. Male
    DLS, Oxfordshire, United Kingdom
Abstract Vibration in beamline optics can degrade the quality of experiments: the resulting movement of a mirror increases the x-ray beam position uncertainty, and introduces flux variations at the sample. This is normally dealt with by averaging data collection over longer periods of time, by slowing down the data acquisition rates, or by accepting lower quality / blurred images. With the development of faster camera technology and smaller beam sizes in next generation synchrotron upgrades, older optics designs can become less suitable, but still very expensive to redesign. Mechanically, mirror actuation systems need to be a balance between repeatability of motion and stability. This normally leads to designs that are ’soft’ and have resonant modes at a relatively low frequency, which can be easily excited by external disturbances such as ground vibration and local noise. In ultra-high vacuum applications the damping is naturally very low, and the amplification of vibration at resonance tends to be very high. At Diamond we designed a process for passively damping beamline mirror optics. First, we analyse the mirror’s vibration modes using experimental modal analysis; we then determine the tuned mass damper parameters using mathematical and dynamic models. Finally, we design a flexure-based metal tuned mass damper which relies on eddy current damping through magnets and a conductor plate. The tuned mass damper can be retrofitted to existing optics using a clamping system that requires no modification to the existing system. In this conference paper we show a case study on a mirror optic on Diamond Light Source’s small molecule single crystal diffraction beamline, I19.
Paper download TUOB02.PDF [0.747 MB / 4 pages]
Slides download TUOB02_TALK.PDF [1.568 MB]
Export download ※ BibTeX LaTeXText/WordRISEndNote
Conference MEDSI2020
Series Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation (11th)
Location Chicago, IL, USA
Date 24-29 July 2021
Publisher JACoW Publishing, Geneva, Switzerland
Editorial Board Yifei Jaski (ANL, Lemont, IL, USA); Patric Den Hartog (ANL, Lemont, IL, USA); Kelly Jaje (ANL, Lemont, IL, USA); Volker R.W. Schaa (GSI, Darmstadt, Germany)
Online ISBN 978-3-95450-229-5
Online ISSN 2673-5520
Received 06 July 2021
Accepted 14 October 2021
Issue Date 08 November 2021
DOI doi:10.18429/JACoW-MEDSI2020-TUOB02
Pages 115-118
Copyright
Creative Commons CC logoPublished by JACoW Publishing under the terms of the Creative Commons Attribution 3.0 International license. Any further distribution of this work must maintain attribution to the author(s), the published article's title, publisher, and DOI.