Operation Status of HLS system installed to EPH18 Measure Ground Change of Large Scientific Equipment in Real Time Hyojin Choi, Seung Nam Kim, Seung Hwan Kim, Sangbong Lee, Hong-Gi Lee, Jang Hui Han, Heung-Sik Kang **Department of Accelerator, PAL-XFEL, Pohang, Korea**

Several parts that comprise the large scientific equipment should be installed and operated at precise three-dimensional location coordinates X, Y, and Z through survey and alignment to ensure their optimal performance. As time goes by, however, the ground goes through uplift and subsidence, which consequently changes the coordinates of installed components and leads to alignment errors ΔX , ΔY , and ΔZ . As a result, the system parameters change, and the performance of the large scientific equipment deteriorates accordingly. Measuring the change in locations of systems comprising the large scientific equipment in real time would make it possible to predict alignment errors, locate any region with greater changes, realign components in the region fast, and shorten the time of survey and realignment. For this purpose, a HLS's (hydrostatic leveling sensor) with 0.2um of resolution are installed and operated in a water pipe of total length 1km in the PAL-XFEL building.

BC1	330MeV		Beamline Section (82m)	Undulator Section (245m)	BTL (57m)			Liı	nac Section (716m)	W	XXX	E
BC2	2.52GeV	The position of HLS and WPS in	Experiment Hutch Optical Hutch	WPS System : wire 129M]		S	
SX Branch	3GeV	PAL_XFEL	25 24 23	22 21 Interval 10	HLS-9	8 HLS-7	HLS-6	HLS-5	HLS-4	HLS-3	HLS-2	HLS-1
BC3	3.45GeV		Ulatar nina	$\frac{12m}{1} = 818M$	726M 7	60 5 mm	512M	420M	302M	204M	109M	2M

water pipe Length 340M / Diameter 60.5mm (Half-filled water depth 30.25mm)

water pipe Length /30M / Diameter /6.3mm (Half-filled water depth 38.15mm)

Linac Water-pipe Length: ~730m Pipe Diameter: 76.3mm • BINP Untrasonic HLS Sensor • Air Hole

