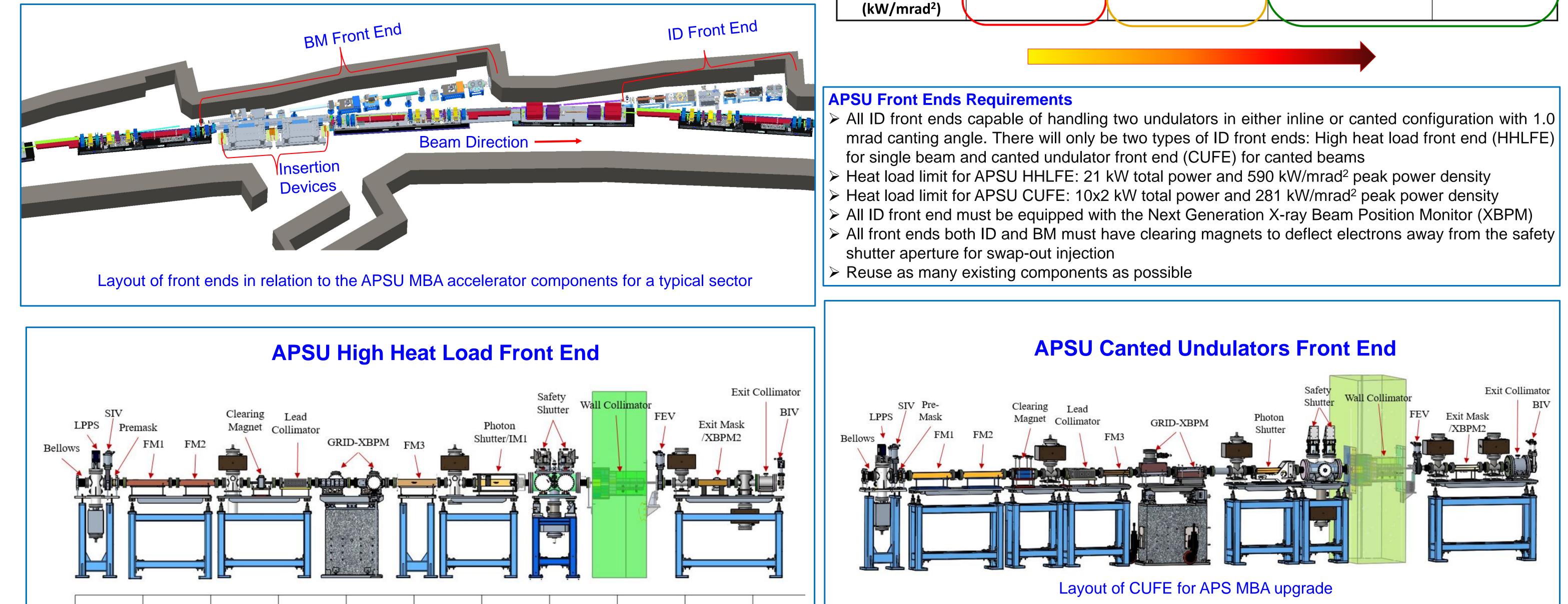
FRONT END DESIGNS FOR THE ADVANCED PHOTON SOURCE MULTI-BEND ACHROMATS UPGRADE*

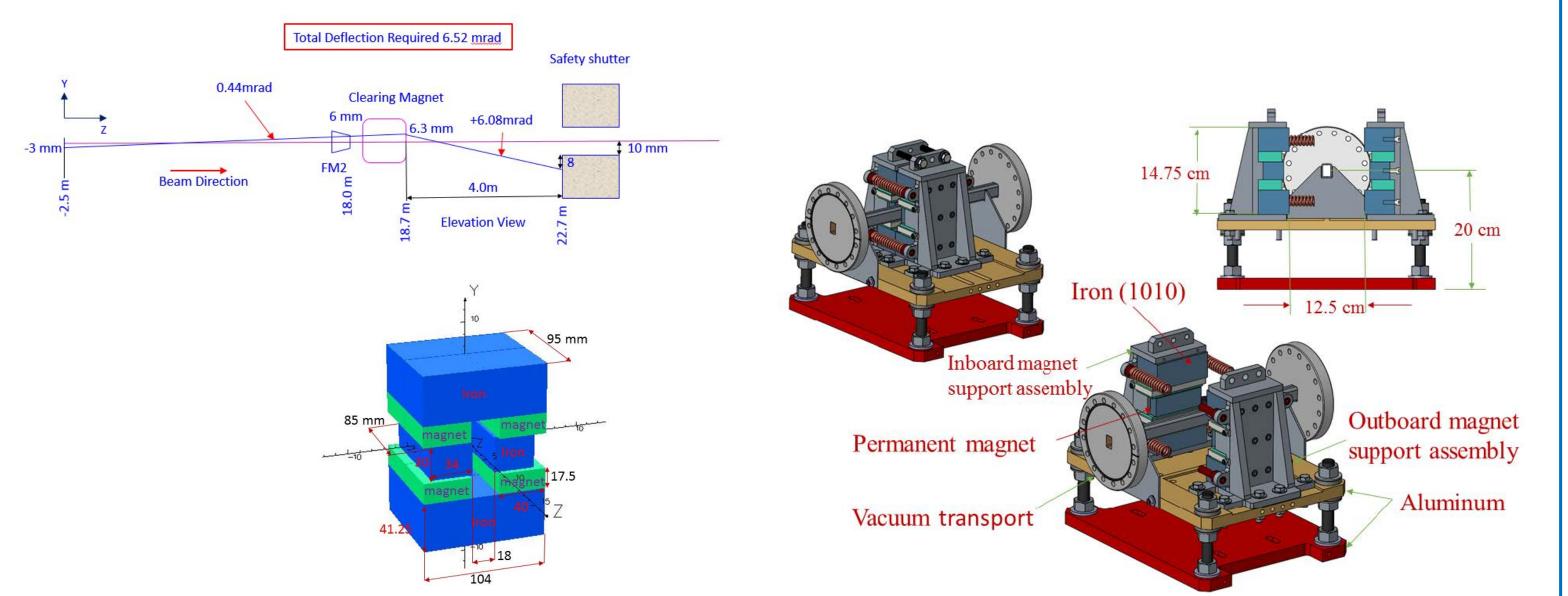

Y. Jaski, F. Westferro, S. Oprondek, S. Lee, B. Yang, M. Abliz, J. Downey, J. Mulvey and M. Ramanathan Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, U.S.A Corresponding email: jaskiy@aps.anl.gov

Abstract

The Advanced Photon Source (APS) upgrade from double-bend achromats (DBA) to multi-bend achromats (MBA) lattice is underway. This upgrade will change the storage ring energy from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA. All front ends must be upgraded to fulfil the following requirements: 1) Include a clearing magnet in all front ends to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shutters open, 2) Incorporate the next generation x-ray beam position monitors (XBPMs) into the front ends to meet the new stringent beam stability requirements, 3) For insertion device (ID) front ends, handle the high heat load from two undulators in either inline or canted configuration. The upgraded APS ID front ends will only have two types: High Heat Load Front End (HHLFE) for single beam and Canted Undulator Front End (CUFE) for canted beam. The final design of the HHLFE and preliminary design of the CUFE are presented.

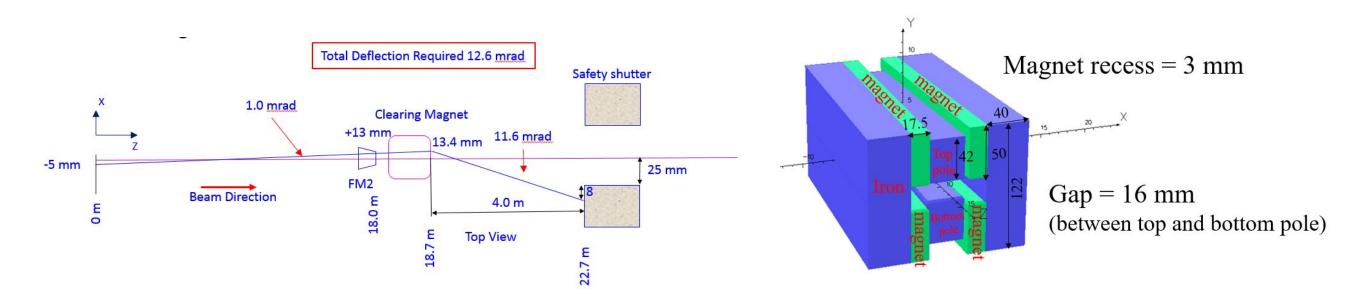
APS Existing ID Front Ends Heat Load Limit

Existing	Original ID FE v1.2	Undulator only FE v1.5	Canted Undulator FE	High Heat Load
Capabilities	pabilities 17 units 4 units		7 units	FE
				5 units
Source	One 2.4-m-long	One 2.4-m-long U3.3	Two canted 2.07-m-	Two inline U3.3
Parameters	U3.3 at 11-mm gap	at 11-mm gap,	long <i>,</i> U3.3 at 10.5 mm	at 10.5-mm gap,
at 7 GeV	at 130 mA	at 150 mA	gap at 200 mA	at 180 mA
Total Power (kW)	6.9	8.9	10 x 2	21
Peak Power				
Density	198	245	281	590



16 17 18 19 20 21 22 23 24 25 26

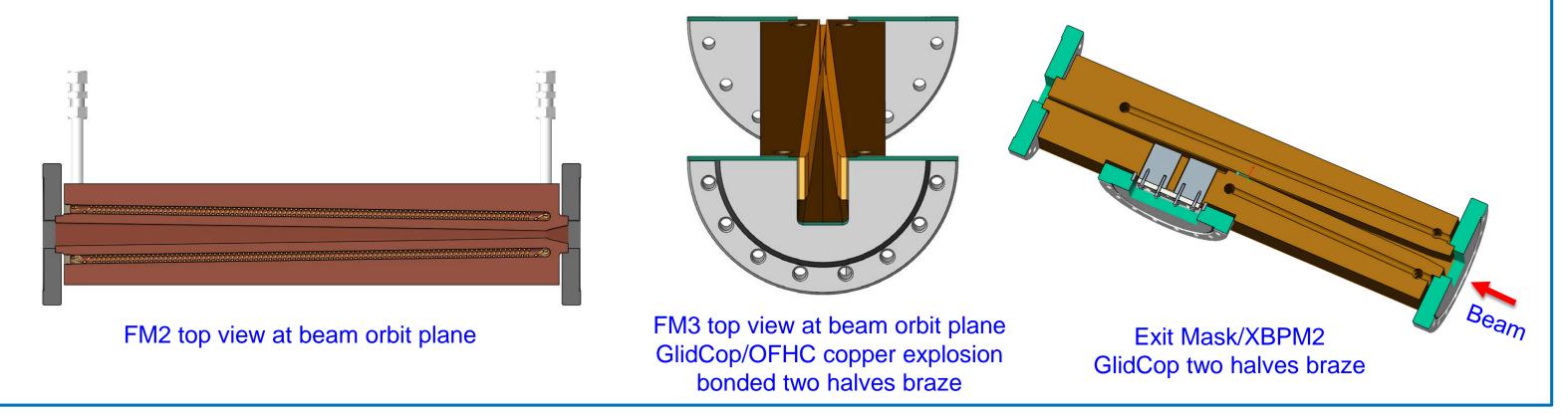
Layout of HHLFE for APS MBA upgrade


APSU HHLFE Key Components Aperture Table

HHLFE Components	Aperture H (mm)×V (mm)	Comments
First Fixed Mask (FM1)	38×26 (inlet)/ 20×16 (outlet)	Box-cone design GlidCop Bar
Second Fixed Mask (FM2)	24×20 (inlet)/ 9×12 (outlet)	Box-cone design GlidCop Bar
Clearing Magnet	13x20 (optical)/ 18(magnet gap)x65(stay clear)	18 mm horizontal gap
Lead Collimator	19.5×19.5 (optical)/ 26×26 (shielding)	Lead surround SST tube
GRID-XBPM	15.3×50 (inlet)/ 1.6×50 (outlet)	
Third Fixed Mask (FM3)	16×47.8 (inlet)/ 3.6×6 (outlet)	GlidCop/OFHC explosion bond, two halves braze
Photon Shutter (PS)	10×47.8 (inlet)/ 5×47.8 (outlet)	
Safety Shutter (SS)	72×20 (optical)/ 72×20 (shielding)	Reuse FEv1.2
Wall Collimator	27×17 (optical)/ 37×26 (shielding)	Lead surround SST tube
Exit Mask (EM)/XBPM2	10×38 (inlet)/ 2×2 (outlet)	Integrated exit mask with XBPM2
Exit Collimator	5×5 (optical)/ 5×5 (shielding)	In-vacuum tungsten

APSU CUFE Key Components Aperture Table

CUFE Components	Aperture H (mm)×V (mm)	Comments
First Fixed Mask (FM1)	64×26 (inlet)/ 40×14 (outlet)	Existing CUFE design
Second Fixed Mask (FM2)	46×17 (inlet)/ 26×5 (outlet)	Existing CUFE design
Clearing Magnet	32×9 (optical)/ 40 (clear)×16 (v. magnet gap)	16 mm vertical gap
Lead Collimator	40×16(optical)/46×22 (shielding)	Lead surround SST tube
Third Splitter Mask (FM3)	50×10 (inlet)/ 10×4 dual (outlet)	New design
GRID-XBPM	50×10 (inlet)/50×1.0 (outlet)	New design
Photon Shutter (PS)	50×10 (inlet)/ 50×5 (outlet)	Existing CUFE design
Safety Shutter (SS)	50×16 (optical)/ 50×16 (shielding)	Existing CUFE design
Wall Collimator	47.6×16.8 (optical)/ 56×26 (shielding)	Existing CUFE design
Exit Splitter Mask (EM)	50×9 (inlet)/ 2×2 dual (outlet)	New design
Exit Collimator	7×6 (optical)/ 7×6 (shielding)	In-vacuum tungsten



CUFE clearing magnet schematic using vertical magnetic gap and CUFE magnet model

Clearing Magnet Requirement and Design Consideration

- Clearing magnet is a fail safe device to ensure that in case electrons gets into front end during swap-out injection while the safety shutters are open, the electrons will be dumped inside the front end and not passing through to the beamline.
- \succ The location criteria for clearing magnets are: a) to allow small magnetic gap so the regular low

HHLFE clearing magnet schematic using horizontal magnetic gap, magnet concept, mechanical model

carbon steel pole material can be used to produce sufficient field, b) to have the least deflection angle which results the shortest magnet length along the beam. Due to safety shutter has larger horizontal aperture than vertical aperture, vertical deflection is desirable.

HHLFE has small horizontal aperture at FM2 which allow small horizontal gap for clearing magnets and deflect beam vertically resulting short magnet length. CUFE has large horizontal aperture to contain both canted beam while vertical aperture is small, so the magnet gap needs to be vertical and deflect beam horizontally which resulting longer magnet length.

Conclusion and Discussions

- All high heat load components are made out of GlidCop bar or GlidCop to OFHC copper explosion bond material. All three styles of masks were successfully fabricated by three vendors.
- The exit mask/XBPM2 combination unit was installed in 27-ID in May 2018 shut down and produced good data.
- For all front ends, The Bremsstrahlung radiation caused by electron beam dumped by clearing magnet into the front end need to be evaluated by radiation physicist as soon as possible to ensure that this radiation is within the allowed limit.

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

*Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357

