

THERMAL STABILITY OF THE NEW ESRF EXTREMELY BRILLIANT SOURCE

<u>B.TAMPIGNY</u>, Y. DABIN, F. THOMAS¹, J.F. BOUTEILLE, L. FARVACQUE, T. MARCHIAL, F. FAVIER, P. ROUX-BUISSON, J.C. BIASCI, P. RAIMONDI, D.MARTIN, M.DIOT, A.FLAVEN BOIS

> European Synchrotron Radiation Facility (ESRF), Grenoble, France ¹also at Institut Laue-Langevin (ILL), Grenoble, France

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

→ Stable stored beam only after a period of 4 days

- Permanent static errors from the origin 1.
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

thermal source effects

 \rightarrow Stable stored beam only after a period of 4 days

 \rightarrow Longitudinal tunnel air-cooling temperature rise of $\sim 2^{\circ}$ C along a tunnel quarter

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- → Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- → Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- → Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- \rightarrow Longitudinal tunnel air-cooling temperature rise of \sim 2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- \rightarrow Longitudinal tunnel air-cooling temperature rise of \sim 2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- \rightarrow Longitudinal tunnel air-cooling temperature rise of \sim 2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- \rightarrow Longitudinal tunnel air-cooling temperature rise of \sim 2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

- 1. Permanent static errors from the origin
- 2. Permanent variable errors (quick effects)
- 3. Errors triggered by beam operation
- 4. Long period errors

 \rightarrow mechanical source effects

 \rightarrow thermal source effects

- → Stable stored beam only after a period of 4 days
- → Longitudinal tunnel air-cooling temperature rise of ~2°C along a tunnel quarter

Errors observed, compensated, operated for 20 years.

EBS ELECTROMAGNETS

• 34 different electromagnets

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

4 11/09/2016 – MEDSI – Thermal Stability of the new ESRF Extremely Brilliant Source

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

 \longrightarrow What % of heat from each electromagnet goes in air?

Pjoule

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

- 34 different electromagnets
- Most of their coils are water cooled (in series or parallel)

Inner volume of electromagnets: natural convection is predominant

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel

0.45L/min Tinlet = 24°C Toutlet = 40°C

• Air: only natural convection is considered

Tambient considered constant at 24°C

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel
 - 0.45L/min Tinlet = 24°C Toutlet = 40°C
- Air: only natural convection is considered

Tambient considered constant at 24°C

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel
 - 0.45L/min Tinlet = 24°C Toutlet = 40°C
- Air: only natural convection is considered

Tambient considered constant at 24°C

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel
 - 0.45L/min Tinlet = 24°C Toutlet = 40°C
- Air: only natural convection is considered

Tambient considered constant at 24°C

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel
 - 0.45L/min Tinlet = $24^{\circ}C$ Toutlet = $40^{\circ}C$
- Air: only natural convection is considered

Tambient considered constant at 24°C

- Each coil dissipates 500W of heat (2000W total)
- Coils are water cooled in parallel
 - 0.45L/min Tinlet = 24°C Toutlet = 40°C
- Air: only natural convection is considered

Tambient considered constant at 24°C

Even simplified, a full 3D model remains too heavy for CFD

ESRF

- Local convective coefficients from 2D model: into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

• Local convective coefficients from 2D model: into a 3D model

- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

Average temperature: 25.4°C (+1.4°C from initial value)

• Local convective coefficients from 2D model: into a 3D model

- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

- Local convective coefficients from 2D model: into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

- Local convective coefficients from 2D model: into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model, but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

- Local convective coefficients from 2D model: into a 3D model
- A part of the girder is modeled
- Same boundary conditions than 2D model. but without CFD and assuming ground temperature at 24°C
- Initially, quadrupole at 24°C

25.4 25.3 25.2 25.1 25 24.9 24.8 24.7 24.6 24.5 temperature increase by ~1°C 24.4 24.3 not observed experimentally 🙁 24.2 (actually it is $+3^{\circ}C$) 24.1 24 0.5 1.5 2.5 2 3 0 Steady state reached after: 5T ~1.5days Time constant T ~0.3day

FEA	EXP.
Tav. +1°C	Tav. +3°C

FEA	EXP.
Tav. +1°C	Tav. +3°C
1% of heat in air	4% of heat in air

ESRF

Displacement = 0

Total displacements [µm]

Full scale mock-up girder prototype with power cables inside

Full scale mock-up girder prototype with power cables inside Why cables inside the girder?

Full scale mock-up girder prototype with power cables inside Why cables inside the girder?

 \rightarrow mainly for space savings reasons

Full scale mock-up girder prototype with power cables inside Why cables inside the girder?

- \rightarrow mainly for space savings reasons
- But: might be dangerous (girder deformation due to the heat)
 - difficult to implement

Full scale mock-up girder prototype with power cables inside Why cables inside the girder?

- → mainly for space savings reasons
- But: might be dangerous (girder deformation due to the heat) • difficult to implement

Mock-up:

- probed with several PT100
- girder is isolated by walls and ceiling to reproduce a cell of the storage ring
- fan is integrated

Time scale [days] in July - August 2016

GIRDER MOCK-UP – TEMPERATURE PROBES

25 No Ventilation on tunnel this period Experiment hall general ventilation 24.5 restart Temperature measurement [°C] 24 23.5 Ventilation cooling start at 25 % of nominal flow 23 start 100% nominal flow 22.5 Lower girder downstream Upper girder downstream 22 8/8 16/8 6/8 10/8 12/8 14/8 18/8 20/8 22/8 24/8 26/8

EBS girder thermal behaviour at Chartreuse test model

Timescale [days during August 2016]

Cables inside the girder: abandoned

- Cables inside the girder: abandoned
- 4 days before reaching: complex to solve

- Cables inside the girder: abandoned
- 4 days before reaching: complex to solve

 - → probably many causes
 → magnet heat source important

- Cables inside the girder: abandoned
- 4 days before reaching: complex to solve

 - → probably many causes
 → magnet heat source important
- +2°C in the tunnel: we are studying different way to solve it

- · Cables inside the girder: abandoned
- 4 days before reaching: complex to solve
 - \rightarrow probably many causes
 - → magnet heat source important
- +2°C in the tunnel: we are studying different way to solve it
 - \rightarrow adding additional cooling in the tunnel
 - \rightarrow preventing heat source to affect relevant parts of the system (ex: coils)

- · Cables inside the girder: abandoned
- 4 days before reaching: complex to solve
 - \rightarrow probably many causes
 - → magnet heat source important
- +2°C in the tunnel: we are studying different way to solve it
 - \rightarrow adding additional cooling in the tunnel
 - \rightarrow preventing heat source to affect relevant parts of the system (ex: coils)
- Investigations continue!

- Cables inside the girder: abandoned
- 4 days before reaching: complex to solve
 - \rightarrow probably many causes
 - magnet heat source important
- +2°C in the tunnel: we are studying different way to solve it
 - \rightarrow adding additional cooling in the tunnel
 - → preventing heat source to affect relevant parts of the system (ex: coils)
- Investigations continue!
 - \rightarrow mock-ups and FEA explorations
 - Iistening all heat sources (RF, cables and absorbers already under investigations)
 - influence of concrete on storage ring thermal stability?

- · Cables inside the girder: abandoned
- 4 days before reaching: complex to solve
 - \rightarrow probably many causes
 - → magnet heat source important
- +2°C in the tunnel: we are studying different way to solve it
 - \rightarrow adding additional cooling in the tunnel
 - \rightarrow preventing heat source to affect relevant parts of the system (ex: coils)
- Investigations continue!
 - \rightarrow mock-ups and FEA explorations
 - \rightarrow listening all heat sources (RF, cables and absorbers already under investigations)
 - → influence of concrete on storage ring thermal stability?

THANK YOU FOR YOUR ATTENTION

