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COSMIC	ScaJering	Endsta(on	
•  COherent	Sca]ering	and	MICroscopy:	260	–	1600	ev	[4.7686	–	0.7749	nm]	
•  X-ray	Photon	CorrelaLon	Spectroscopy	(XPCS),	which	is	a	method	to	study	temperature	

fluctuaLon	in	hard	and	sof	condensed	ma]er	systems.	
•  Diffuse	sca]ering	due	to	coherent	x-rays	give	rise	to	speckles	due	to	the	interference	of	sca]ered	

wave	fronts	that	are	randomly	phase	shifed	by	the	morphology	of	the	sample.	
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•  Any	change	in	the	surface	morphology	causes	a	

subsequent	change	in	the	speckle	pa]ern.	By	monitoring	
the	speckle	pa]ern	over	Lme	at	a	parLcular	temperature	
and/or	magneLc	(electric)	field	it	is	possible	to	determine	
the	temporal	evoluLon	of	the	surface	features.	

•  For	example,	in	a	magneLc	system	the	use	of	resonantly	
tuned	coherent	x-ray	gives	magneLc	speckles	which	are	
representaLve	of	the	exact	lateral	magneLc	
heterogeneity	(i.e.	domains).	

•  XPCS	in	a	magneLc	system	therefore	gives	informaLon	
about	how	domains	fluctuate	as	the	system	goes	through	
a	phase	transiLon.		

250	mm		
[9.8	in]	



Experimental	Assembly	
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Magne(c	System	Mechanical	Design	
•  Iron	Dominated	Magnet,	LN2-cooled	Coils	
•  Vanadium	permendur	poles	(4	poles)	are	used	to	

maximize	field	
•  Pole	geometry	is	opLmized	to	reduce	saturaLon	(taper)	

within	geometric	constraint	envelope	
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A	cross	sec(on	of	the	pole-coil	assembly	is	
shown	above.	The	5000	ampere-turn	coil	is	
enclosed	within	a	304	SS	welded	can	designed	
to	hold	liquid	nitrogen.	This	cooling	enables	
the	field	strength	at	the	sample	with	18A	at	
2.85	V	running	through	each	coil.		
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Magne(c	System:	Power	Configura(on	
•  Using	two	power	supplies	(with	opposing	coils	powered	in	series)	the	

field	orientaLon	can	be	rotated	in	the	X-Z	plane	

Z	

X	



Analysis	of	Flux	at	the	Sample	
•  OpLmized	for	maximum	magneLc	field	within	the	constrained	space	that	allows	

for	sample	manipulaLon	and	cooling	and	line	of	sight	to	the	rotaLng	detector	
•  Using	two	power	supplies	(with	opposing	coils	powered	in	series)	the	field	

orientaLon	can	be	rotated	in	a	plane	
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Magnet	System	Status	
•  Analysis	is	complete	
•  Proof	of	Concept	Test	is	

complete	
•  ProducLon	assembly	by	end	of	

December		2016	
•  ProducLon	test	by	end	of	

February	2017	
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Sample	Thermal	Control:	30K	–	400K	
•  Cooling	is	enabled	by	a	coaxial	flow	cryostat	that	is	a]ached	to	a	trunnion	that	

rotates	the	sample.		
•  Requirements	call	for	a	short	cryostat	design	which	is	accomplished	with	a	

serpenLne	path	for	the	exhaust.		
•  The	unique	helium	exhaust	transiLon	employs	automaLc	thermal	control	to	

ensure	an	ice-free	feed	through.		
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Cryostat	Design	
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Cryostat-Sample	Cross	Sec(on	
•  Copper	braids	used	to	allow	sample	moLon	
•  Copper	to	copper/glidcop	interfaces	are	TIG	

welded	
•  Stainless	steel	to	glidcop	interfaces	are	silver	

soldered	
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Sample	Thermal	Control	Status	
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•  Cryostat	is	complete	
•  Cold	Tests		

–  Cold	Finger	at	5K;	Sample	at	13.9K	
–  Closed-cycle	Cryocooler,	cold	finger	at	7K	

•  Complete	design	of	trunnion	by	end	of	September	2016	
•  ProducLon	assembly	by	end	of	December		2016	
•  ProducLon	test	by	end	of	February	2017	



Clever	Diagnos(cs	
•  Alignment	
Microscope	to	see	
pinhole	and	sample	

•  Borescope	to	
witness	automaLc	
sample	transfer	
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Thank	you!	
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