A new crystal bender for the ID31 Laue-Laue monochromator

Muriel Magnin-Mattenet,

Pierrick Got, Amparo Vivo, Veijo Honkimäki

MEDSI BARCELONA 11-16 September 2016

The European Synchrotron

□ Introduction: The ID31 Beamline

□ Specification of the bender

Principle and design

Analysis: Analytical
 FEA - mechanical model
 FEA - non linear thermo-mechanical model

Prototype

□ Commissioning (optical and X-ray)

Conclusion

Preliminary questions

What will be the behavior of the crystal when I will put the white beam?
Which parasitic stresses will be inside the crystal, when I will bend it?
What is the parallelism between my surface and my crystalline planes?
What will happen when I will clamp my crystal?

INTRODUCTION: THE ID31 BEAMLINE

Experimental techniques: tomography / reflectivity / SAXS / WAXS Samples: fuel cells, solar cells, rechargeable batteries, catalytic materials...

Laue-Laue monochromator At 105m from the source 1- What will be the behavior of the crystal when I will put the white beam?

The ID31 beamline:

X-Ray energies ranging from 20 to 150keV. The energy range 50-150 keV is covered by a Laue-Laue monochromator located at 105 meters from the source.

Absorbers

T_{si}=125K

0 = 3

ESRF

The monochromator in short and bender specification

BENDER DESIGN

ANALYTICAL APPROACH

Hypothesis

- Mechanical beam theory approximation formula (1)
- The weight is negligible because the crystal is vertical.
- The forces F [N] applied by the two jacks are equal.
- The anticlastic effect is not considered here
- (x,y) origin is taken at the middle of the crystal

	With : E Young modulus of Si [N/m ²]
$d^2u M(x)$	I the inertia of the beam = $constant=bh^3/12 [m^4]$
$\frac{1}{dr^2} = \frac{1}{EI}$	b: width of the crystal, h: thickness
	<i>M(x):</i> local bending moment [N.m]

Deflection $u_1(x)$ of the crystal between the fixing points A and B and $u_2(x)$ beyond A,B

$$u_1(x) = \frac{d.F}{EI} x^2$$
 $u_2(x) = \frac{2d.Fa^2}{EI} x - \frac{dFa^2}{EI}$ (2)

Example of deflection calculation on half of the crystal using Matlab.

For a given expected radius, the program gives the displacement to be requested to the jacks. Reference of all the values are position "flat" of the crystal.

Maximum stress in the flexure: 110MPa (Invar limit: 450MPa) Pushing force for one jack: 140N (jackMax:240N)

Maximum stress in the flexure: 110MPa (Invar limit: 450MPa) Pushing force for one jack: 140N (jackMax:240N)

Radius of curvature: 19.5m

Analytical displacement to be requested to the jack [m]= 291e-06 Solidworks simulation displacement in D[m]: 294.8e-6

Page 10 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016I Muriel Magnin-Mattenet

CRYO BEHAVIOR: PHYSICAL PROPERTIES FOR INVAR (FE-36NI) AND SILICON

Thermal conductivity (log scale)

ESRF The European Synchrotron

Expansion coefficient ∆L/L

Non linear thermo-mechanical FEA modelisation and first X-Ray commissioning

The maximum stress between clamp and crystal is \sim 100MPa \rightarrow solution: we put indium at the interface to absorb the mechanical stresses.

Video of deformation when cooling down

Non linear thermo-mechanical FEA modelisation and first X-Ray commissioning

The maximum stress between clamp and crystal is \sim 100MPa \rightarrow solution: we put indium at the interface to absorb the mechanical stresses.

Non linear thermo-mechanical FEA modelisation and first X-Ray commissioning

→ solution: we put indium at the interface to absorb the mechanical stresses.

The European Synchrotron

ESRF

PROTOTYPE AND TEST BENCHES

PROTOTYPE AND TEST BENCHES

ESRF

OPTICS LAB COMMISSIONING

A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016I Muriel Magnin-Mattenet & al

OPTICS LAB COMMISSIONING

DIFFICULTIES

Capacitive sensors

The noise of the capacitive sensors remains a little high. Their behavior at very low temperature is not fully tested yet.

Piezo-jacks control

The control of the piezo-jack is not straight-forward due to the fact that only one sensor (the capacitive one) reads the displacement of both the piezo and the stepper motor.

DIFFICULTIES

Capacitive sensors

The noise of the capacitive sensors remains a little high. Their behavior at very low temperature is not fully tested yet.

Piezo-jacks control

The control of the piezo-jack is not straight-forward due to the fact that only one sensor (the capacitive one) reads the displacement of both the piezo and the stepper motor.

CONCLUSION

Despite of all the difficulties, the systems works well.

The stability in time is very good.

Analytical model/FEA model/ optical tests and first X-ray commissioning gives very similar results in the behavior of the system.

http://www.esrf.eu

DIFFICULTIES

Capacitive sensors

The noise of the capacitive sensors remains a little high. Their behavior at very low temperature is not fully tested yet.

Piezo-jacks control

The control of the piezo-jack is not straight-forward due to the fact that only one sensor (the capacitive one) reads the displacement of both the piezo and the stepper motor.

CONCLUSION

Despite of all the difficulties, the systems works well.

The stability in time is very good.

Analytical model/FEA model/ optical tests and first X-ray commissioning gives very similar results in the behavior of the system.

http://www.esrf.eu

Page 17 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016l Muriel Magnin-Mattenet

Page 17 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016l Muriel Magnin-Mattenet

Page 17 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016 Muriel Magnin-Mattenet

The European Synchrotron | ESRF

Page 17 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016I Muriel Magnin-Mattenet

The European Synchrotron ESRF

Page 17 I A new crystal bender for the ID31 Laue-Laue monochromator I Medsi 2016l Muriel Magnin-Mattenet