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Abstract

In this paper, we investigate the usage of advanced al-
gorithms, specifically Bayesian optimization, adapted for
optimizing the design and operation of different linear ac-
celerators (LINACs). The aim is to enhance the design
efficiency and operational reliability and adaptability of lin-
ear accelerators. Through simulations and case studies, we
demonstrate the effectiveness and practical implications of
these algorithms for optimizing LINAC performances across
diverse applications.

INTRODUCTION

The field of accelerator physics has advanced significantly,
driven by the demand for higher performance in particle
accelerators used in research, medical, and industrial appli-
cations. Conventional methods for designing and operating
these complex systems, such as Nelder-Mead Simplex [1]
and robust conjugate direction search [2], often rely on exten-
sive simulations and expert knowledge due to the large and
varied accelerator components and parameters needed to be
tuned. Therefore, developing more efficient ways to solve
complex optimization problems through advanced machine
learning (ML) based algorithms are being explored.

Among the advanced algorithms, Bayesian Optimization
(BO) has been gaining popularity within the accelerator com-
munity for both offline and online tuning due to its flexibility,
low initialization effort, fast convergence, and robustness to
noisy environments [3–5]. BO builds a probabilistic surro-
gate model, typically a Gaussian process [6], of the objective
function. This model predicts the function’s behavior and
quantifies uncertainty. The optimization process iteratively
selects new evaluation points based on this model, balancing
exploration of the search space with exploitation of known
high-performing regions. An acquisition function guides
the selection of points by considering both predicted perfor-
mance and uncertainty. This efficient approach finds optimal
parameters with a limited number of evaluations.

In this paper, we explore the application of Bayesian Opti-
mization in the design of the ANTHEM MEBT line and the
operation of the TAP accelerator complex at INFN-LNL. We
discuss the challenges in accelerator optimization, review
current techniques, and present case studies demonstrating
the effectiveness of Bayesian optimization.
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THE ANTHEM MEBT LINE
The AdvaNced Technologies for Human-centrEd

Medicine (ANTHEM) project aims to develop technologies
for the healthcare of chronic patients. One of its main
proposals is the construction of an Accelerator-based
Boron Neutron Capture Therapy (A-BNCT) facility in
Caserta, Campania, Italy. This facility will utilize a
high-intensity proton source with the TRASCO RFQ as the
proton accelerator, operating at a frequency of 352 MHz
and an output beam energy of 5 MeV at a 30 mA beam
current [7]. The medium energy beam transport (MEBT)
line, located after the RFQ, is responsible for transporting
and manipulating the spatial distribution of the beam to
the target for optimal neutron production. As presented in
Fig. 1, the MEBT line design includes various magnetic
elements, such as quadrupoles, a dipole, and a pair of
octupoles, which utilize the tail folding technique to achieve
a uniform beam distribution at the target [8]. Good beam
uniformity at the target with an area of 120 × 120 mm2

is necessary to maintain the beam power deposition at
around 1 kW/cm2 for optimal neutron production and target
operation.

Figure 1: ANTHEM MEBT line beam envelopes with
quadrupoles, dipole and octupoles being the blue, red, and
purple elements respectively. Blue line: x. Red line: y.

Bayesian Optimization for Shaping the Beam Uni-
formity at the Target

The manipulation of the beam distribution is performed
through the activation and optimization of the octupole
strengths and the addition of a collimator. However, be-
fore proceeding with this step, the MEBT line was first op-
timized to transport the beam without losses to the target
using TraceWin, a tracking program that utilizes a PIC tech-
nique to calculate the beam dynamics and exploit the space
charge-induced behavior of the beam [9]. Additionally, the
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beam envelope was shaped to create beam waists at the oc-
tupole positions, decoupling their effects in the transverse
plane (refer to Fig. 1).

To optimize beam uniformity at the target, we chose to use
a Bayesian Optimization (BO) Python package [10] paired
with TraceWin (for particle transport and tracking) to tune
the magnetic field strengths of the last three quadrupoles
and the two octupole magnets (5 parameters). Before per-
forming the optimization, the octupoles were activated and a
collimator of 114 × 114 mm2 was added to shape the beam
as seen in the last part of MEBT line. The objective func-
tion of the BO was designed to balance both uniformity and
transmission of the beam, with a constraint that the beam
transmission should be higher than 85%, which is important
for maintaining neutron production yield above a certain
threshold and facilitating easier collimator cooling design.
The algorithm was given 60 random points to map the search
space and 100 iterations for BO.

The transverse beam distributions at the target before and
after the uniformity optimization are presented in Fig. 2.
Through the tail folding technique of the octupole magnets
and BO, we achieved a beam homogeneity of ±12.5% in x
and ±15.02% in y for a 120 × 120 mm2 beam area with a
high beam transmission of 88% (refer to Table 1). There is a
clear asymmetry in the x-plane for both beam distributions
due to the uncorrected dispersion caused by the dipole. Tar-
get cooling simulations must be performed to determine if
this asymmetry will cause problems in target operation and
maintenance. The entire optimization run lasted about 30
minutes.

Figure 2: Transverse beam distributions at the target. Left:
octupoles inactive, without collimator. Right: octupoles
active, with collimator.

Table 1: Beam Transmission and Transverse Uniformity at
the Target

Uniformity x Uniformity y Transmission

± 12.5% ± 15.02% 87.51%

THE SUPERCONDUCTIVE LINAC ALPI
The ALPI linac consists of 20 cryostats (CR), each hous-

ing four Quarter Wave Cavities (refer to Fig. 3). At the start
of each ion-specific run, each cavity must be independently

tuned to the beam. The superconducting cavities were origi-
nally engineered to reach 3 MV/m with a bore aperture of
10 mm. The linac period was designed to include one triplet
for transverse focusing and two cryostats (eight cavities) to
optimize the machine’s real estate. Currently, ALPI has
two injectors for stable ions: the electrostatic accelerator
TANDEM, which accelerates light ions, and the PIAVE su-
perconducting RFQ, with an output energy of 587.5 keV/u
[11]. Both injectors suffer from low transmission to ALPI
due to the machine’s low longitudinal acceptance. The ALPI
PIAVE accelerator complex has a design transmission of
60%, with real transmission of around 15 - 20%.

In recent years, advancements in superconducting cavity
technology have nearly doubled the accelerating fields of the
cavities compared to the original design values. However,
this improvement in energy gain has resulted in a trade-off
with transmission efficiency. To help minimize these losses,
especially in the low beta regime, the Alternate Phase Fo-
cusing technique at ± 20∘ synchronous phase was adapted
[12]. This technique reduced the longitudinal phase advance
from around 160∘ to below 120∘, which helped control the
defocusing and steering effects but further reduced the lon-
gitudinal acceptance of ALPI.

Figure 3: TANDEM ALPI PIAVE (TAP) accelerator com-
plex at INFN-LNL. Blue rectangle: CR1-6. Purple square:
PM9. Red square: FC7.

Bayesian Optimization for Shaping the Longitudi-
nal Acceptance

A beam of 129Xe25+ was accelerated to 950 MeV through
the PIAVE-ALPI setup with cryostats 1 to 17 activated. The
TAP accelerator complex is equipped with several diagnos-
tics stations, including a beam profiler and a Faraday cup.
Additionally, all the components (quadrupoles, dipoles, steer-
ers, cavities, bunchers, and diagnostics) apart from the su-
perconducting RFQ PIAVE are controllable by EPICS. The
beam current is the main characteristic we monitor for setting
up the beam for the users. At first, the beam was manually
transported from the source to the faraday cup FC7 (refer
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to Fig. 3) and the cavities activated and tuned according to
the APF technique for 1-2 days. The beam current reached
through manual tuning and transport was 122 nA.

To test if the BO can improve the beam transmission of
ALPI, the algorithm was tested on the first six cryostats (24
cavities) while looking at the current reading at Faraday cup
FC7. The phases of the cavities were allowed to explore ±
3.5∘ from the original phase setting. The objective function
of the BO depended solely on the current measurement, as
it was the only diagnostic available. The algorithm was set
to have 40 random points and 80 BO iterations.

Table 2: Initial and Optimized Current Measurement at
Faraday Cup 7 (FC7) and the Corresponding Measurement
Increase

Diag-
nostic

Initial Opti-
mized

% In-
crease

Time
Elapsed

FC7 122 nA 180 nA 47.54 % 5 min

The results of the optimization are presented in Table 2,
which shows the initial and final current readings at FC7,
and Fig. 4(a), which shows the synchronous phases of the
cavities for AFP (black) and BO (red). We observed an in-
crease of 47.54% in transmission in just under 5 minutes.
To understand the observed increase in transmission and
correlate it to changes in the beam dynamics of the accelera-
tor, we plotted the longitudinal acceptance of ALPI before
(black) and after (red) the optimization, as shown in Fig. 4(b).
The longitudinal acceptance was obtained in TraceWin by
transporting a beam with large longitudinal emittance and
number of particles through ALPI and tracking the surviv-
ing particles at the end back to the start. The synchronous
phases of the cavities were adjusted to simulate the opti-
mized phases obtained by the BO. The resulting longitudinal
acceptances show that with the BO, we are distorting the
shape of the acceptance to increase the acceptance towards
+𝜙. This could be due to the input beam having a phase drift
induced by timing differences between PIAVE and ALPI
or by temperature fluctuations throughout the accelerator
operation.

Figure 4: (a)Synchronous phases of the accelerating cavi-
ties CR1-6. (b) Longitudinal acceptance. Black: Alternate
Phase Focusing (APF). Red: Bayesian optimized (BO).

We also observed an increase in longitudinal emittance
from 𝜖𝐴𝑃𝐹 = 2.942 𝜋.deg.MeV to 𝜖𝐵𝑂 = 3.212 𝜋.deg.MeV

accounting for an almost 9% increase in acceptance. In
addition, we determined that there is no significant change
in the output beam energy by changing the phases of the
accelerating cavities.

Bayesian Optimization for Improving the Trans-
verse Optics

Another BO test at the TAP facility was performed with
the same beam of 129Xe25+ to improve the transmission
by optimizing the transverse optics of PIAVE, looking at
Faraday cup PM9 (refer to Fig. 3), which is just before the
entrance on ALPI. In this case, the elements included in the
algorithm were quadrupole lens averages and imbalances and
steerers totaling 37 parameters. The quadrupole lenses were
allowed to vary by ±2 (average) and ±0.5 (imbalance) while
the steerers varied by ±0.003 with respect to the starting
point settings. Adaptive boundaries were also applied to the
test run, allowing the bounds to expand if the best settings
were close to the set boundaries.

Table 3: Beam Transmission at Faraday Cup PM9 after
Optimizing the Transverse Optics of PIAVE

Optimizer Transmission Time Elapsed

Best operator 62 % 1 hour
BO 64.5 % 30 min

To compare the effectiveness of BO with manual tun-
ing, we gave the best operator in the laboratory one hour to
optimize the PIAVE transverse optics for maximum beam
transmission, starting from the same initial settings. Then,
we run the BO until it surpassed the beam transmission set by
the best operator. The results of the test are listed in Table 3.
Through BO, we obtained a transmission of 64.5% through
PIAVE, which is the highest ever recorded since its opera-
tion. It is also the first time the transmission approached the
theoretical values of PIAVE, which are around 65 - 70%.
Comparing this result to the manual tuning (62%), the algo-
rithm achieved the same transmission in half the time (240
iterations).

CONCLUSIONS
In this paper, we present an innovative method applied to

both accelerator design and operation. We utilized BO to
optimize the design of the spatial beam manipulation seg-
ment of the ANTHEM MEBT line for obtaining a uniform
beam distribution at the target with minimal losses. From a
practical perspective, we also employed BO to enhance the
performance of both transverse and longitudinal elements
at the TAP facility, thereby improving the machine’s trans-
mission efficiency. Our findings suggest that ML has the
potential to enhance accelerator physics, providing opportu-
nities to improve performance and operational efficiency. In
the future, our goal is to optimize all elements of the TAP
facility simultaneously, enabling fully automatic machine
settings.
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