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Abstract
Precisely calibrating superconducting Radio-Frequency

(RF) linear accelerators is crucial for accurately assessing
cavity bandwidth and detuning, which provides valuable
insights into cavity performance, facilitates optimal accel-
erator operation, and enables effective fault detection and
diagnosis. In practice, however, calibration of RF signals
can present several challenges, with calibration drift being
a significant issue, especially in settings prone to humidity
and temperature fluctuations. In this paper, we delve into
the effect of environmental factors on the calibration drift
of superconducting RF cavities. Specifically, we examine
long-term calibration drifts and explore how environmental
variables such as humidity, temperature, and environmental
noise affect this phenomenon. The results show that environ-
mental factors, particularly relative humidity, significantly
influence calibration drifts. By analyzing these correlations,
appropriate compensation algorithms can be designed to mit-
igate and eliminate these effects, thus optimizing calibration
accuracy and stability.

BACKGROUND
The European X-ray Free-Electron Laser (European

XFEL) is one of the most advanced facilities utilizing Super-
conducting Radio Frequency (SRF) technology, providing
researchers with unprecedented capabilities in probing the
structure and dynamics of matter at the atomic scale. The
European XFEL relies heavily on the stability and accuracy
of the SRF cavities to ensure the high quality of the X-ray
pulses. Precisely calibrating RF cavities is crucial for ac-
curately assessing cavity bandwidth and detuning, which
provides valuable insights into cavity performance, facilitat-
ing optimal accelerator operation.

A key challenge in the operation of SRF cavities is the phe-
nomenon of calibration drift, which, if not managed properly,
can lead to significant performance degradation. Various
environmental parameters, such as temperature and humid-
ity fluctuations, and mechanical vibrations, can influence
this drift, necessitating robust calibration and compensation
mechanisms.

The Low-Level RF (LLRF) control system plays a crucial
role in maintaining the stability of the RF fields within the
SRF cavities. The LLRF system continuously monitors and
controls the RF signals to generate precise and stable RF
fields required for X-ray free-electron laser pulses, including
the compensation for any deviations caused by environmen-
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tal factors. However, calibration drift remains a persistent
issue despite the advanced control algorithms employed as
they rely on the calibration.

The Drift Compensation Module (DCM) [1] has been
developed as part of the LLRF system to address this chal-
lenge. It is specifically designed to mitigate the effects of
calibration drift by dynamically adjusting the calibration
parameters in real-time. However, it is important to note
that DCM only calibrates the probe signal, not the drift of
forward and reflected signals.

Accurate measurements of the RF forward 𝑉𝑚
𝐹 and the

reflected signals 𝑉𝑚
𝑅 are critical for calculating cavity band-

width and detuning. Ideally, the sum of 𝑉𝑚
𝐹 and 𝑉𝑚

𝑅 should
equal the RF probe signal 𝑉𝑚

𝑃 . However, in practice, the
finite directivity of waveguide directional couplers and the
drift caused by environmental parameters impact the accu-
racy of the RF forward and reflected signals, thus degrading
the performance of the accelerator.

This paper investigates the long-term calibration drift in
superconducting RF cavities and examines the influence of
environmental factors on this phenomenon. By analyzing
the correlation between these variables, we found that the
calibration error or drift could be predicted based on en-
vironmental factors. Additionally, calibration coefficients
can be accurately forecasted, offering a promising calibra-
tion method for SRF cavities operating in Continuous Wave
(CW) mode.

RF SIGNAL CALIBRATION AND
CALIBRATION DRIFT

Long-term Calibration Drift
The original virtual probe is defined by the sum of the

measured forward 𝑉𝑚
𝐹 ∈ ℂ and reflected 𝑉𝑚

𝑅 ∈ ℂ RF
signals, expressed in In-phase and Quadrature (I&Q) form
as

𝑉𝑣
𝑃 = 𝑉𝑚

𝐹 + 𝑉𝑚
𝑅 (1)

Ideally, the virtual probe 𝑉𝑣
𝑃 should be equal to the mea-

sured RF probe signal 𝑉𝑚
𝑃 ∈ ℂ. However, as mentioned

above, in practice, the finite directivity of waveguide direc-
tional couplers and drift due to environmental parameters
can affect the measurement of the RF forward and reflected
signals, leading to calibration errors. Formally, calibration
error is defined as the difference between the measured probe
signal 𝑉𝑚

𝑃 and the virtual probe 𝑉𝑣
𝑃, denoted as:

𝐸𝐶 = 𝑉𝑚
𝑃 − 𝑉𝑣

𝑃 = 𝑉𝑚
𝑃 − (𝑉𝑚

𝐹 + 𝑉𝑚
𝑅 ) (2)
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Specifically, the amplitude and phase of the calibration
error are defined as 𝐸𝐴

𝐶 and 𝐸𝑃
𝐶, respectively

𝐸𝐴
𝐶 =

Σ𝐾
𝑖=0∣𝑉𝑚

𝑃 𝑖 − 𝑉𝑣
𝑃𝑖∣

𝐾

𝐸𝑃
𝐶 =

Σ𝐾
𝑖=0∠ (𝑉𝑚

𝑃 𝑖 − 𝑉𝑣
𝑃𝑖)

𝐾

(3)

Here, the 𝐾 is the number of data points in each RF pulse.
The RF pulse at the European XFEL, typically sampled
at 9 MHz with around 𝐾 = 16000 data points per pulse,
consists of distinct filling, flattop, and decay phases, crucial
for precise control of electron acceleration. More detailed
insights can be found in [2]. The amplitude of calibration
error 𝐸𝐴

𝐶 is visualized in Fig. 1. The data used in this study
was collected at 10-minute intervals from May 20, 2024, to
June 6, 2024, from C1-4.M4.A6.L3 (LINAC 3, RF station
6, cryomodule 4, and SRF cavity 1-4 at European XFEL).
Excluding some missing pulses, a total of 2348 𝑅𝑚

𝐹 , 𝑅𝑚
𝑅 , and

𝑅𝑚
𝑃 RF pulses was used for data analysis. As can be seen

from the figure, there is a significant drift in the error.

Figure 1: Calibration error and the long-term calibration
drift. Shown is the absolute average amplitude error.

During the experiments, operators noticed that these drifts
were mainly caused by environmental parameters such as hu-
midity and temperature fluctuations, as shown in Fig. 2. The
correlation between the calibration errors and environmental
parameters will be analyzed in the next section.

Figure 2: Humidity and temperature fluctuations.

Calibration of RF Signals
If well calibrated, the virtual probe can be utilized for

precise RF field control in case the probe signal is missing
or corrupted [3]. In this paper, the forward and reflected
RF signals are calibrated using Eq. (4), which is based on
superconducting cavity system dynamics. This calibration is
achieved by performing a nonlinear least square optimization
constrained by the law of energy conservation, as detailed
in [2, 4].

Then the calibrated virtual probe could be expressed as

𝑉𝑣𝑐
𝑃 = 𝑋𝑉𝑚

𝐹 + 𝑌𝑉𝑚
𝑅 (4)

where 𝑋 and 𝑌 correspond to the calibration factors applied
to 𝑉𝑚

𝐹 and 𝑉𝑚
𝑅 , respectively.

Calibration is performed for each RF 𝑉𝑚
𝐹 and 𝑉𝑚

𝑅 pulse.
The long-term analysis of the calibration coefficients 𝑋 and
𝑌 reveals that the amplitude of the applied calibration co-
efficients 𝑋 and 𝑌 is essentially stable, while the phase of
the calibration coefficients varies considerably, with a trend
similar to that of the calibration error amplitudes in Fig. 1.
After calibration, the magnitude of the calibration error is
greatly reduced, by a factor of 5 up to 10 for some cavities.

RESULTS
Correlation Analysis

To better understand the correlation between the environ-
mental parameters, calibration drift and calibration coef-
ficients, we analyzed the correlation coefficients between
these signals, and found that humidity has the greatest effect
on calibration drift. Each signal is normalized to a range of
0 to 1 by linear scaling for correlation analysis. The visual-
ization of the normalized signals in Fig. 3 also indicated a
strong correlation.

Figure 3: Visualization of the normalized data.

Prediction of Calibration Errors and Calibration
Coefficients based on Environmental Parameters

When the LLRF system operates in pulsed mode, pulse-
based calibration can effectively calibrate the system. How-
ever, when the system operates in a CW mode, the signal
𝑉𝑚

𝑃 remains almost constant over time, and therefore the
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existing calibration models in pulsed mode are no longer
applicable. One possible solution is to utilize the strong cor-
relation between the signals and then predict the calibration
error and the required calibration coefficients based on the
environmental factors.

This can be formulated as a system identification prob-
lem with multiple inputs and single output. We choose
polynomial NARMAX (Nonlinear AutoRegressive Moving
Average with eXogenous input) models and for identifica-
tion we use FROLS [5] (Forward Regression Orthogonal
Least Squares), implemented by the Sysidentpy [6] pack-
age in Python. Excluding the first 600 pulses due to some
missing signal between them, 1748 pulses were used for
model prediction. Specifically, the data is divided into a
training set and a validation set, where 80% is used to train
the model and 20% is used for validation. The predictions
are based on humidity, temperature, and the Loaded Quality
factor (𝑄𝐿) of the RF cavity. The order of the polynomial
model is set to 3 and the number of regressors to 7 or 8. For
example, the prediction model for the calibration error of
cavity C4.M4.A6.L3 can be expressed as

𝐸𝐴
𝐶𝑝 (𝑘) = 𝑎0𝐸𝐴

𝐶𝑝(𝑘 − 1) + 𝑎1𝐸𝐴
𝐶𝑝(𝑘 − 2)

+ 𝑎2𝐸𝐴
𝐶𝑝(𝑘 − 3) + 𝑎3𝑥3(𝑘 − 1)𝑥2(𝑘 − 1)𝑥1(𝑘 − 1)

+ 𝑎4𝑥3(𝑘 − 1)𝑥2(𝑘 − 3)𝐸𝐴
𝐶𝑝(𝑘 − 26) + 𝑎5𝐸𝐴

𝐶𝑝(𝑘 − 9)

+ 𝑎6𝑥3(𝑘 − 1)𝑥2(𝑘 − 1)𝑥1(𝑘 − 3) (5)

where 𝐸𝐴
𝐶𝑝(𝑘) denotes the predicted amplitude of calibration

error at discrete time 𝑘, and 𝑥1, 𝑥2, and 𝑥3 correspond to
the normalized humidity, temperature, and 𝑄𝐿, respectively.
The individual regressor coefficients are listed in Table 1.
The root relative mean square error for this model is 0.209.

Table 1: Regressor Coefficients

Coefficients Values

𝑎0−3 0.556 0.191 0.121 3.200
𝑎4−6 -0.152 0.124 -3.021

Figure 4: Predicting normalized calibration error.

The corresponding predicted calibration errors for cavity
C4.M4.A6.L3 are shown in Fig. 4. In addition, the differ-
ence between the predicted calibration amplitude error and
the original calibration amplitude error is less than 0.05
MV/m. This encouraging result will help in deciding when
to recalibrate the RF system.

Furthermore, taking cavity C4.M4.A6.L3 as an example,
we predicted the amplitude and phase of calibration coeffi-
cients 𝑋 and 𝑌 using the prediction model based on FROLS
algorithm and obtained virtual probe signals based on the
predicted calibration coefficients, which further provided
the calibration errors, as shown in Fig. 5. The results show
that it is possible to achieve a level of accuracy comparable
to the pulse-based calibration method, except for the last few
data points caused by the warming up of the external quality
factor 𝑄𝑒𝑥𝑡 after the machine interruption. This suggests a
promising calibration method for RF cavities operating in
CW mode.

Figure 5: Calibration error based on the predicted calibration
coefficients.

CONCLUSION
The contribution focuses on the long-term calibration

drift of superconducting RF cavities and analyzes how envi-
ronmental factors such as humidity and temperature affect
this drift. In addition, the correlation between environmen-
tal factors and the calibration coefficients obtained by the
pulsed-based calibration method was analyzed. Based on the
strong correlation between the signals, a model is presented
for predicting calibration errors and applied amplitude and
phase corrections for RF signals based on environmental
factors. This provides a viable method for calibrating RF
cavities operating in CW mode.

Future work should include the validation of longer-term
data analysis. Furthermore, an automatic method for deter-
mining when to recalibrate the RF system should be explored.
Additionally, the validity of the fitting and prediction periods
of the model should be assessed and confirmed.
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