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Abstract
In the field of accelerator physics, the quality of a particle

beam is a multifaceted concept, encompassing characteris-
tics like energy, current, profile, and pulse duration. Among
these, the emittance and Twiss parameters—defining the size,
shape, and orientation of the beam in phase space—serve
as important indicators of beam quality. Prior studies have
shown that carefully calibrated statistical methods can ex-
tract emittance and Twiss parameters from pepper-pot emit-
tance meter images. Our research aimed to retrieve these
parameters with machine learning (ML) from a transverse
image of the beam after its propagation through a pepper-pot
grid and subsequent contact with a scintillating plate. We
applied a Convolutional Neural Network (CNN) to extract
the x and y emittances and Twiss parameters (𝛼 and 𝛽), pro-
ducing a six-dimensional output by simply looking at the
image without calibration information. The extraction of
divergence-dependent parameters, such as 𝛼 and emittance,
from a single image presented a challenge, resulting in a
large Symmetric Mean Absolute Percentage Error (SMAPE)
of 30%. To mitigate this issue, our novel method that in-
corporated image data from two points along the particles’
propagation path yielded promising results. 𝛽 prediction
achieved a low SMAPE of 10.5%, while 𝛼 and emittance
predictions were realized with a 16.5% SMAPE and 13.3%
SMAPE, respectively. Our findings suggest the potential
for improvement in ML beam quality assessment through
multi-point image data analysis.

BACKGROUND

Figure 1: Pepper-pot emittance meter arrangement.

At the Argonne Tandem Linear Accelerator System (AT-
LAS), images of the beam are captured using a pepper-pot
(PP) emittance probe. A pepper-pot is a plate with holes in
∗ This work was supported by the U.S. Department of Energy, under Con-

tract No. DE-AC02-06CH11357. This research used the ATLAS facility,
which is a DOE Office of Nuclear Physics User Facility.

† ianknight@gatech.edu

it placed transverse to the beam splitting it into beamlets.
In a PP emittance probe system, beamlets travel a short dis-
tance then hit a scintillating plate which fluoresces in those
locations, see Fig. 1. An image of the plate is then captured
by a camera, see Fig. 2.

Figure 2: Real-world pepper pot image.

The beam envelope, the x and y extent of the beam, exist
in physical space; phase space is a theoretical space defined
by the momentum and physical positions of particles in the
beam. Particles have position and momentum in three di-
mensions, for this reason there are 3 separate phase space
ellipses in the absence of coupling. The longitudinal coordi-
nate, z, is the direction the beam travels, and the (x, y) plane
or transverse plane contains the image that PP metering
captures.

𝛾𝑥2 + 2𝛼𝑥𝑥′ + 𝛽𝑥′2 = 𝜖 (1)

where 𝑥′ and 𝑦′ represent momentum.

1 + 𝛼
𝛽 = 𝛾 (2)

The distribution of momenta and position of particles
when projected onto a phase plane generate an ellipse, re-
ferred to as the phase space ellipse. Twiss parameters
(𝛼, 𝛽, 𝛾) and emittances (𝜖) define the size, shape, and ori-
entation of the phase space ellipses as in Eq. (1). Beta is
proportional to the extent of the beam, horizontal or vertical,
in physical space. Emittance is the area of the phase space
ellipse, and in physical space, it relates to the spread of the
beam. Alpha is the correlation of position and momentum.
Visually, it describes the tilt of the beam in phase space.

Problem Definition
Our PP images, defined in physical space, do not fully

capture information about particles’ momenta as they show
a snapshot in time while momentum describes a process that
changes over time. To extract the Twiss parameters from
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Figure 3: Machine learning system diagram.

an image in physical space, a model must somehow extract
information about the particles’ momentum. In statistical
methods, this is done by calculating the change between
the location of the beamlet when passing through the PP
and contacting the scintillating plate, using known distances
between the holes in the PP and the distance between the PP
and plate to find the parameters [1,2]. The goal of this work
is to input a PP image and produce a 6D output containing the
x and y Twiss parameters and emittance without including
that additional information, see Fig. 3.

METHODS
Generating a large dataset of PP images for a exploratory

study would be prohibitively expensive, therefore, this study
uses the TRACKv39 beam dynamics software to generate a
distribution of five million particles for the computation of
each image [3]. The PP arrangement is simulated in Python.
𝜖, 𝛼, and 𝛽 were varied in the x and y dimensions with z
being the direction of propagation1. The initial distributions
of particles were generated with parameters in the ranges: 𝛼𝑥:
[-5.0, 5.0], 𝛽𝑥: [50.0, 500.0], 𝜖𝑥: [0.03, 0.30], 𝛼𝑦: [-5.0, 5.0],
𝛽𝑦: [50.0, 500.0], 𝜖𝑦: [0.03, 0.30]; the target of prediction
was the final beam distributions after drift. Collecting a
large dataset (8,000+ 6-parameter varied examples) required
scaled compute, TRACKv39 simulations were automated
and parallelized in a computing cluster.

Measures of Prediction Error

SMAPE = 200
𝑛

𝑛
∑
𝑖=1

|𝑦𝑖 − ̂𝑦𝑖|
|𝑦𝑖| + | ̂𝑦𝑖|

(3)

Models in this work were trained using Mean Squared
Error (MSE), a standard in ML. Their performance statistics
are stated with Mean Absolute Error (MAE) for interpretabil-
ity and Symmetric Mean Absolute Error (SMAPE) when
the relative accuracy of parameters is important. There are
several common definitions of SMAPE, and Eq. (3) shows
the formula used in this work.
1 𝛾 is excluded as it is dependant on 𝛼 and 𝛽 as in Eq. (2).

Physically Informed Neural Nets
This work leverages PINNs by adding observational bias

to ML models in the form of data augmentation. Other
principles of physics-informed learning, such as inductive
biases through architectural interventions and learning biases
via modified loss functions, were applied in this work but
did not yield successful outcomes [4].

The benefit of applying ML to the analysis of PP images
is two-fold. First, data-driven learning methods have the
potential to continuously improve in accuracy as they are
exposed to more data, unlike rule-based methods which
remain static regardless of data scale. Second, ML enables
the discovery of latent features within the data. In particular,
our CNN method does not require direct information about
the distance from the PP to the scintillating plate as this
information is implicitly learned from the data. This implicit
feature is now an expectation of the model, and there is no
guarantee it will generalize to other distances.

Figure 4: Example simulated before-after image.

After simulated propagation through the pepper-pot, parti-
cles are typically propagated a distance to inform a model of
the particles’ momenta. We propose that beam divergence
or convergence, the change of momentum over distance, can
be captured in a single input image by showing the before-
and-after of a short propagation, see Fig. 4. This before-after
image contains PP images from two points in propagation,
e. g., Fig. 5. In simulated settings where movement of in-
dividual particles is known, generating images from a later
point in propagation is simple. However, in a real beamline,
this method requires the installation of a second PP system,
which is prohibitive.

Model Descriptions
To gauge the ability of ML models to extract Twiss pa-

rameters and emittance from PP images a Convolutional
Neural Network (CNN), a Multi-Layer Perceptron (MLP),
and a Ridge Regression (RR) model were fit to the simulated
dataset. SciPy’s RR and a range of standard MLPs, subject
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Figure 5: Example simulated before-after image.
to architecture search, were used. Images were flattened for
both the MLP and RR. An AlexNet-like CNN structure was
used [5].

RESULTS
To decide the propagation distance hyperparameter we

varied it and found 0 cm and 10 cm pairings were the most
performant outperforming single images by 21.20% MAE in
Ridge regression on a test set, averaged across all parameters
(p = 0.03).

Figure 6: Ridge regression MAE by propagation distance.

Depicted in Fig. 6, we varied the propagation distance and
found that increasing propagation distance does not improve
model performance. Single images also benefit from propa-
gation. Training with single images that have an additional
propagation after the PP results in lower error. Immediately
after the PP, difference in beamlet size is not obvious. Vi-
sual inspection after a short propagation shows differences
in beamlet size across the image, revealing divergence or
convergence in the beam.

Machine Learning
All numbers reflect ensemble models subject to Bayesian

hyperparameter sweeps trained on the entire 8,755 image
dataset split into 70% train, 10% validation, and 20% test.
The performance on a common test set2 is reported from the
best run on the validation set (see Table 1 and Table 2).

Table 1: SMAPE for Single Images

Model 𝜖𝑥 𝛼𝑋 𝛽𝑥 𝜖𝑌 𝛼𝑌 𝛽𝑌

MLP 44.1 96.0 90.2 43.5 97.4 90.8
Ridge R. 21.1 67.8 60.2 20.2 67.6 60.9
CNN 20.0 39.4 24.7 22.4 37.5 17.8

Ensemble 20.0 39.4 24.7 20.2 37.5 17.8

2 Defined as a random selection of parameters.

Table 2: SMAPE for Before-After Images

Model 𝜖𝑥 𝛼𝑋 𝛽𝑥 𝜖𝑌 𝛼𝑌 𝛽𝑌

MLP 44.1 80.6 75.6 42.0 81.0 74.5
Ridge R. 18.2 63.7 52.2 17.9 61.8 53.6
CNN 19.0 16.0 12.0 14.9 10.6 9.0

Ensemble 18.2 16.0 12.0 14.9 10.6 9.0

CONCLUSIONS
Although PP emittance metering has been shown to be

a reliable method of extracting emittance and Twiss pa-
rameters from transverse beam images, a simple learning
method does not suffice to capture the relationship between
the parameters and image. Giving further information to the
model in the form of data augmentation or model structure
is required to push beyond a threshold of performance for
momentum-dependant beam parameters.

Further work is needed to validate learning methods on
images from a live accelerator. To test the performance ML
models with a statistical method developed for real images,
like in Barabin et. al., a simulation must generate images that
are indistinguishable from real images or work must be done
to transfer their method to simulated data. Additionally,
further work is needed in adding inductive and learning
biases to PINNs in PP analysis as only data augmentation
has so far yielded results.
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