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Abstract
Imposing angular momentum to a particle beam increases

its stability against perturbations from space charge. In order
to fully explore this potential, proper matching of intense
coupled beams along regular lattices is mandatory. Herein, a
novel procedure assuring matched transport is described and
benchmarked through simulations. The concept of matched
transport along periodic lattices has been extended from
uncoupled beams to those with considerable coupling be-
tween the two transverse degrees of freedom. For coupled
beams, matching means the extension of cell-to-cell peri-
odicity from just transverse envelopes to the coupled beam
moments and to quantities being derived from these.

INTRODUCTION
Preservation of beam quality is of major concern for ac-

celeration and transport especially of intense hadron beams.
This aim is reached at best through provision of smooth and
periodic beam envelopes, being so-called matched to the
periodicity of the external focusing lattice. For the time
being, the quality of matching has been evaluated through
the periodicity of spatial beam envelopes. This is fully suffi-
cient as long as there is no coupling between the phase space
planes (for brevity “planes”), neither in beam properties nor
in lattice properties.

The TRACE-2D code [1] is well suited to provide for a
matching beam line between a given initial beam matrix
and a desired exit beam matrix even for a full 4D scenario.
However, it is an intrinsic property of the periodic-solution
problem that the initial beam matrix at the entrance of the
periodic channel is unknown. Accordingly, this code cannot
be applied to the present scenario in a straightforward way.
This paper aims to demonstrate that a 4D-periodic cell-by-
cell solution exists and demonstrates its derivation [2].

Coupled beams inhabit ten independent second-order rms
moments. They are summarized within the symmetric beam
moments matrix

𝐶 ∶=
⎡
⎢⎢⎢
⎣

⟨𝑥𝑥⟩ ⟨𝑥𝑥′⟩ ⟨𝑥𝑦⟩ ⟨𝑥𝑦′⟩
⟨𝑥′𝑥⟩ ⟨𝑥′𝑥′⟩ ⟨𝑥′𝑦⟩ ⟨𝑥′𝑦′⟩
⟨𝑦𝑥⟩ ⟨𝑦𝑥′⟩ ⟨𝑦𝑦⟩ ⟨𝑦𝑦′⟩
⟨𝑦′𝑥⟩ ⟨𝑦′𝑥′⟩ ⟨𝑦′𝑦⟩ ⟨𝑦′𝑦′⟩

⎤
⎥⎥⎥
⎦

, (1)

and four of its elements quantify beam coupling. Beams are
𝑥-𝑦 coupled if at least one of these elements is different from
zero.

The beam line being used to determine the periodic solu-
tion of an intense coupled beam along a periodic channel is
sketched systematically in Fig. 1.
∗ c.xiao@gsi.de

Figure 1: The beam line comprises three parts: (I) cou-
pling production section; (II) matching section; (III) regular
quadrupole doublet section (twelve cells). Space charge
effects are not considered along the first two sections (see
text).

At the beginning of the beam line, an uncoupled beam is
assumed with beam sigma-matrix 𝐶 (𝑠0). The beam matrix
at the beginning of the matching section is

𝐶 (𝑠1) = ℘ ⋅ 𝐶 (𝑠0) ⋅ ℘T , (2)

and ℘ indicates the transfer matrix of the coupling section.
In order to obtain a periodic solution for this coupled

beam, the details of the matching section are not required as
seen in the following. However, it is modeled by a transport
matrix including 16 elements (in units of m and rad)

ℜ (𝑚1, 𝑚2, … , 𝑚16) =
⎡
⎢⎢⎢
⎣

𝑚1 𝑚2 𝑚3 𝑚4
𝑚5 𝑚6 𝑚7 𝑚8
𝑚9 𝑚10 𝑚11 𝑚12
𝑚13 𝑚14 𝑚15 𝑚16

⎤
⎥⎥⎥
⎦

. (3)

Although initially being unknown, the 16 elements must
ensure that ℜ is symplectic. For brevity, the set of
𝑚1, 𝑚2, … , 𝑚16 shall be denoted by ℵ.

MODELLING OF PERIODIC CHANNEL
For zero current, the effective focusing forces are given

solely by the external lattice. The actual beam shape has no
influence on them and therefore the periodic solution even for
coupled beams may be found analytically. For intense beams
instead, defocusing space charge forces depend on the beam
shape and orientation in real space. Actually, they depend
also on the spatial distribution. However, since modelling of
space charge forces using rms-equivalent KV-distributions
proofed to work very well for matching purposes, this ap-
proach is followed here as well.

The periodic solution (zero current) meets the condition

𝐶 (𝑠2) = ℑ ⋅ 𝐶 (𝑠2) ⋅ ℑT , (4)

and the transport matrix from the exit of the coupling sec-
tion 𝑠1 to the exit of the first cell is

℧ (ℵ) = ℑ ⋅ ℜ (ℵ) , (5)
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where ℑ is fully known from the cell of the quadrupole
channel.

From first principles, neither the periodic solution is
known nor are the elements ℵ that provide for the according
matching from 𝑠1 to the entrance of the channel 𝑠2. The iter-
ative procedure to obtain finally both, starts with a guessed
initial set ℵ𝑖 that just meets the condition of being symplec-
tic. It will most likely not meet the condition of the periodic
solution, i.e.,

ℜ (ℵ𝑖) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ𝑖) ≠ ℧ (ℵ𝑖) ⋅ 𝐶 (𝑠1) ⋅ ℧T (ℵ𝑖) , (6)

hence the beam matrix in front of the channel is different
from the one behind the first cell.

With the MATHCAD [3] routine Minerr, a set of match-
ing matrix elements ℵ0 for zero beam current can be found,
such that the symplectic condition is met sharply together
with providing periodicity. The routine is dedicated to solve
an under-determined system of equations with a defined set
boundary conditions, such that

ℜ (ℵ0)⋅𝐶 (𝑠1)⋅ℜT (ℵ0) = ℧ (ℵ0)⋅𝐶 (𝑠1)⋅℧T (ℵ0) . (7)

PERIODIC SOLUTION WITH CURRENT
The iterative procedure starts from the beam moments

matrix 𝐶 (𝑠1) being then transported through the matching
line ℜ (ℵ0) for zero current. The resulting beam matrix at
the entrance to the channel

𝐶0 (𝑠2) = ℜ (ℵ0) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ0) , (8)

is then tracked with high current (10 mA) through one cell.
Accordingly, the total transport matrix of the cell ℑsc (ℵ0) is
a result of the tracking procedure for high current. ℑsc (ℵ0)
depends on the current 𝐼 and on the spatial beam parameters
at the entrance of the channel. The 4×4 elements of ℑsc (ℵ0)
are stored for further use. Most likely, 𝐶0 (𝑠2) does not meet
the condition of the periodic solution with current, i.e,

𝐶0 (𝑠2) ≠ ℑsc (ℵ0) ⋅ ℜ (ℵ0) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ0) ⋅ ℑT
sc (ℵ0) .

(9)
However, the cell matrix ℑsc (ℵ0) is used to re-adapt the

matching setting such, that a new matching ℵ1 is found which
provides for equal beam matrices before and after transport
through the cell matrix ℑsc (ℵ0)

𝐶1 (𝑠2) = ℑsc (ℵ0) ⋅ ℜ (ℵ1) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ1) ⋅ ℑT
sc (ℵ0) ,

(10)
emphasizing that the above equation uses the stored elements
of ℑsc (ℵ0).

This new matching ℵ1 delivers the beam matrix 𝐶1 (𝑠2)
in front of the channel. It is now re-tracked with current
through the cell. The tracking will provide a new cell matrix
ℑsc (ℵ1). Again its 4×4 elements are stored to re-adapt
the matching to a setting ℵ2 meeting the periodic solution
assuming the new matrix ℑsc (ℵ1) along the channel

𝐶2 (𝑠2) = ℑsc (ℵ1) ⋅ ℜ (ℵ2) ⋅ 𝐶 (𝑠1) ⋅ ℜT (ℵ2) ⋅ ℑT
sc (ℵ1) .

(11)

This in turn provides a new beam matrix 𝐶2 (𝑠2) in front
of the channel, which changes the transport matrix of the
cell to ℑsc (ℵ2). Continuing this procedure finally converges,
i.e., the changes from ℵ𝑛−1 to ℵ𝑛 become very small and
finally negligible. Accordingly, after a sufficient amount of
iterations 𝑗, the periodic condition is fulfilled through

𝐶𝑗 (𝑠2) ≈ ℑsc (ℵ𝑗)⋅ℜ (ℵ𝑗)⋅𝐶 (𝑠1)⋅ℜT (ℵ𝑗)⋅ℑT
sc (ℵ𝑗) . (12)

The matrix 𝐶𝑗 (𝑠2) contains the periodic beam moments
at the entrance to the channel and ℑsc (ℵ𝑗) is the periodic
transport matrix of the cell including current and coupling.

In case of the example presented here, sufficient conver-
gence has been reached at 𝑗 = 6 and the corresponding beam
matrix (in units of mm and mrad) is

𝐶6 (𝑠2) =
⎡
⎢⎢⎢
⎣

+147.8 +0.006 +59.34 −0.006
⋯ +80.44 +0.006 +114.9
⋯ ⋯ +47.36 +0.011
⋯ ⋯ ⋯ +286.7

⎤
⎥⎥⎥
⎦

, (13)

The corresponding output beam matrix (in units of mm and
mrad) is

𝐶6 (𝑠2 + ℓ) =
⎡
⎢⎢⎢
⎣

+147.8 +0.026 +59.33 −0.106
⋯ +80.41 +0.035 +114.9
⋯ ⋯ +47.34 −0.017
⋯ ⋯ ⋯ +286.8

⎤
⎥⎥⎥
⎦

.

(14)
This section shall be closed by a comparison of the fully

4D-periodic solution along the channel with the one obtained
from simple 2D-envelope matching. Figure 2 plots the six
2D projections of the phase space ellipses in front of and
behind the first cell of the periodic channel. It has been
shown that cell-to-cell periodicity of an intense coupled
coasting beam can be achieved under the assumption of a
KV-distribution.

The so-called 2D-envelope matching [4] ignores the cou-
pled beam moments leading to the non-coupling matching
transfer matrix and the resulting beam matrix at the entrance
of the channel is (in units of mm and mrad)

𝐶† (𝑠2) =
⎡
⎢⎢⎢
⎣

+183.6 +0.169 +100.0 +0.000
⋯ +101.1 +0.000 −10.00
⋯ ⋯ +59.34 +0.011
⋯ ⋯ ⋯ +379.7

⎤
⎥⎥⎥
⎦

, (15)

while the corresponding beam matrix at the exit is (in units
of mm and mrad)

𝐶† (𝑠2 + ℓ) =
⎡
⎢⎢⎢
⎣

+186.1 +1.967 +6.026 −103.7
⋯ +105.1 −30.71 +157.4
⋯ ⋯ +61.88 +5.640
⋯ ⋯ ⋯ +388.7

⎤
⎥⎥⎥
⎦

.

(16)
Figure 3 compares the six 2D projections of the 4D phase

in front of and behind the first cell of the periodic channel.
As expected, periodicity is achieved for the horizontal and
vertical planes. However, there is no periodicity in the pro-
jections that mix the two planes. In the following section, the
results from KV-rms-tracking are benchmarked with particle
tracking of a beam with Gaussian distribution.
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Figure 2: From full 4D-periodic solution: projected 4×rms
ellipses of the beam second moments matrix at the en-
trance (blue) and exit (red) of the periodic channel for
a coupled proton beam with 10 mA. It is obtained that
𝐶6 (𝑠2) ≈ 𝐶6 (𝑠2 + ℓ).

BENCHMARKING
Benchmarking has been done with MATHCAD using

a KV-type beam and BEAMPATH [5] using a Gaussian-
type beam. Initial distributions of 2×104 particles are rms
equivalent to the second beam moments matrices 𝐶6 (𝑠2)
and 𝐶† (𝑠2), respectively. Particle-tracking simulations have
been done using a 10 mA proton beam and 12 cells of the
periodic channel. Figures 4 and 5 show the transverse 2×rms-
beam sizes along the quadrupole channel obtained from rms
tracking with mathcad and extracted from particle tracking
simulation with BEAMPATH.

Applying cell-to-cell second moments matching, both,
transverse 2×rms-beam sizes from KV-rms tracking and
from particle tracking a Gaussian beam, reveal a high de-
gree of envelope matching to the lattice periodicity. The
KV-based rms-beam size is very regular and the Gaussian
rms-beam size shows slight fluctuation. Those are to be
expected since space charge forces especially at the outer
parts of the beam are different for KV and for Gaussian dis-
tributions. The matching proofed to work very well even for
the Gaussian beam.

Applying simple 2D-envelopes matching, the transverse
2×rms-beam sizes are still well matched to the periodic
quadrupole channel, although the fluctuations are notably
larger compared to those of the full 4D solution.

Figure 3: From simple 2D-envelope matching: projected
4×rms ellipses of the beam second moments matrix at the
entrance (blue) and exit (red) of the periodic channel for
a coupled proton beam with 10 mA. It is obtained that
𝐶† (𝑠2) ≠ 𝐶† (𝑠2 + ℓ).

Figure 4: From full 4D-periodic solution: horizontal and
vertical 2×rms-beam sizes of a coupled 10 mA proton beam
along a regular FODO quadrupole channel as obtained from
rms tracking (blue) and particle tracking (red). The initial
particle distribution is rms equivalent to matrix 𝐶6 (𝑠2).

Eigen-emittances are preserved by symplectic transforma-
tions as KV-rms tracking. Instead, nonlinear space charge
forces occurring at particle tracking of a Gaussian beam
do not preserve the eigen-emittances. Figures 6 and 7 plot
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Figure 5: From simple 2D-envelope matching: horizontal
and vertical 2×rms-beam sizes of a coupled 10 mA proton
beam along a regular FODO quadrupole channel as obtained
from rms tracking (blue) and particle tracking (red). The ini-
tial particle distribution is rms equivalent to matrix 𝐶† (𝑠2).

eigen-emittances, projected rms emittances, and square roots
of 4D emittances along the channel from particle-tracking
simulations.

Figure 6: From full 4D-periodic solution: transverse pro-
jected rms emittances as obtained from rms tracking (blue)
and particle tracking (red). Green (magenta) curves indicate
the eigen-emittances (square roots of the 4D emittances)
calculated from particle tracking. The initial particle distri-
bution is rms equivalent to beam matrix 𝐶6 (𝑠2).

CONCLUSION
It has been shown that cell-to-cell 4D-matching can be

achieved for a coupled beam with considerable space charge

forces. This has been accomplished by rms-tracking of cou-
pled beams with KV-distribution combined with a dedicated
iterative procedure of tracking and re-matching.

Benchmarking with an initial Gaussian distribution along
a channel with a large cell number revealed that the method
works very well.

Figure 7: From simple 2D-envelope matching: transverse
projected rms emittances as obtained from rms tracking
(blue) and particle tracking (red). Green (magenta) curves
indicate the eigen-emittances (square roots of the 4D emit-
tances) calculated from particle tracking. The initial particle
distribution is rms equivalent to beam matrix 𝐶† (𝑠2).
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