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Abstract
Many accelerator physics problems such as beamline de-

sign, beam dynamics model calibration or interpreting ex-
perimental measurements rely on solving an optimization
problem that use a simulation of beam dynamics. How-
ever, it is difficult to solve high dimensional optimization
problems using current beam dynamics simulations because
calculating gradients of simulated objectives with respect
to input parameters is computationally expensive in high
dimensions. To address this problem, backwards differen-
tiable beam dynamics simulations have been developed that
enable computationally inexpensive calculations of objec-
tive gradients that are largely independent of the number
of input parameters. In this work, we highlight current and
future applications of differentiable beam dynamics simula-
tions in accelerator physics, such as improving accelerator
design, model calibration, and machine learning. We also
describe current collaborative efforts between SLAC, DESY,
KIT, and LBNL to implement fast, backwards differentiable
beam dynamics simulations in Python. These tools will en-
able unprecedented improvements in optimization efficiency
and speed when using beam dynamics simulations, leading
to enhanced control and detailed understanding of physical
accelerator systems.

INTRODUCTION
Solving challenging optimization problems is critical to

accelerator design, interpreting experimental measurements,
and calibrating physics models to realistic beam dynamics.
However, current beam physics simulations can present a bot-
tleneck in the optimization process. Most current beam dy-
namics simulations used in accelerator physics are “gradient-
free” simulations, where only the input and output of the
model is available. This limits the applicability of power-
ful gradient-based optimization algorithms, such as first-
or second-order gradient descent, which often outperform
optimization algorithms that do not use gradient informa-
tion [1]. The only available methods for estimating gradi-
ents of gradient-free simulations is finite difference methods,
which require higher computational costs proportional to
the number of optimization parameters. As a result, opti-
mization problems that include beam dynamics simulations

are often restricted to optimizing a handful of parameters at
once.

An alternative simulation paradigm to gradient-free simu-
lations is so-called “differentiable simulations” , illustrated
in Fig. 1. In addition to making conventional predictions,
differentiable simulations also provide the gradient of sim-
ulations with respect to input parameters. Differentiable
simulations are enabled through the use of a computational
technique known as “automatic differentiation” [2]. Compu-
tational programs, such as beam dynamics simulations, can
be broken down into a set of atomic operations (addition,
multiplication, exponentiation etc.) for which the derivative
is analytically known. Differentiable simulations track the
derivative of each calculation step alongside normal compu-
tation and use the chain rule to calculate total derivatives of
simulation outputs with respect to simulation inputs.

Figure 1: Block diagram showing the difference between
standard programming used to model physical phenomena,
which produces outputs 𝑓 (𝑥) as a function of model inputs 𝑥,
and differentiable programming, which produces gradients
of model outputs ∇𝑥𝑓 (𝑥) in addition to model outputs.

Several existing beam dynamics software packages [3–5]
use a technique known as “forward differentiation” [2] to cal-
culate arbitrary order Taylor maps of accelerator elements,
and more recently, to optimize accelerator design parameters
for beam dynamics under the influence of space charge [6].
However, the efficacy of this method is restricted to com-
puting derivatives with respect to a small number of input
parameters, making it impractical for optimizing problems
that contain a large number of free parameters. On the other
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hand, “backwards” differentiable calculations (sometimes
referred to “adjoint differentiation”) offer the advantage of
computing gradients with less computational cost given a
large number of input parameters.

In both forwards and backwards cases, the novel differ-
entiable simulations open doors to new solutions for accel-
erator design and tuning tasks. Some example applications
that have been demonstrated using the backwards differen-
tiable codes Cheetah [7] and Bmad-X [8] are listed in Fig. 2
and Fig. 3 respectively. First and foremost, backwards dif-
ferentiation enables gradient-based optimization for lattice
parameters during the design stage. The derivative informa-
tion also allows efficient model calibration, also known as
system identification, for the simulation model. For exam-
ple, the unknown misalignments of the components can be
fitted to the measured data, improving the accuracy of the
simulation model. The differentiable simulations can also
be coupled to other learning-based optimization algorithms.
In the case of the sample-intensive reinforcement learning
(RL) algorithms, the simulation serves a fast-executing train-
ing environment, removing the need for training on the real
accelerators and reducing the overall training time by several
orders of magnitude. The derivative information can be fur-
ther used to accelerate the training of some RL algorithms.
For the Bayesian optimization algorithms, the differentiable
simulation can be included as a physics-informed prior mean
function for the Gaussian process model. This provides extra
knowledge on the optimization task and can speed up the
convergence in accelerator tuning tasks [9, 10].

In this work, we describe collaborative efforts to com-
bine efforts on implementing backwards differentiable beam
dynamics simulations for solving challenging optimization
problems. This enables unprecedented capabilities in solv-
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Figure 2: Example applications using the differentiable sim-
ulation code Cheetah [7]. (a) Serving as a physics-informed
prior mean for BO. (b) Differentiable beam dynamics track-
ing for gradient-based accelerator tuning and system iden-
tification. (c) Providing fast beam dynamics environments
for training RL agents. (d) Training modular neural network
surrogate models within physical beam dynamics simula-
tions.

Figure 3: Example applications using the differentiable simu-
lation code Bmad-X [8]. (a) High-dimensional optimization
of beamline parameters for accelerator design. (b) Calibra-
tion of beamline parameters to experimental data. These
applications have also been investigated using Cheetah.

ing accelerator design challenges, calibrating beam dynam-
ics simulations to experimental measurements, and integrat-
ing physics information into machine learning workflows.

BACKWARDS DIFFERENTIABLE
TRACKING PACKAGE IN PYTHON

Bmad-X [8] is a Python package with library-agnostic
particle tracking routines based on Bmad [5]. This allows
the use of well established machine learning Python libraries,
such as PyTorch [11], as the particle tracking back-end to
enable backward mode automatic differentiation and GPU
acceleration. Additionally, using PyTorch as Bmad-X back-
end facilitates the integration of physics-based accelerator
simulations with neural network models and gradient-based
optimization routines.

The simulation code Cheetah [7] is implemented using
the PyTorch framework and benefits from its optimized ten-
sor computations, single-node GPU support, and automatic
backward mode differentiation features. Cheetah consists
of two main modules, Beam and Element, representing par-
ticle beams and the individual accelerator components. It
currently supports two types of tracking, namely the track-



32nd Linear Accelerator Conference (LINAC2024),Chicago, IL, USA

JACoW Publishing

ISBN: 978-3-95450-219-6

ISSN: 2226-0366

doi: 10.18429/JACoW-LINAC2024-THPB068

MC1.1 Beam Dynamics, beam simulations, beam transport

769

THPB: Thursday Poster Session

THPB068

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.



ing of statistical parameters assuming a Gaussian distributed
beam with ParameterBeam and the tracking of macroparti-
cles using the ParticleBeam. For the lattice elements such
as drift sections and magnets, linear transfer maps are imple-
mented and used as the default tracking routine. Some more
complex tracking methods, including space charge effects,
are also implemented. Cheetah also includes several optional
speed optimizations, such as intelligent transfer map reduc-
tion and lazy execution. When activated, these can, in some
cases, allow the tracking to run 2 to 8 orders of magnitude
faster than compared-to CPU simulation codes [7]. What
is more, Cheetah offers converters from a number of other
simulation codes to make integrating it with conventional
non-differentiable simulations straightforward.

Bmad-X tracking routines provide higher fidelity by using
the map derived from the element Hamiltonian and use a
kick-drift-kick model. On the other hand, most of Cheetah
tracking routines are linear transfer maps, speeding up the
computation, specially when using hardware acceleration.

CURRENT AND FUTURE WORK
Extensive efforts are currently underway to unify Cheetah

and Bmad-X into a single differentiable beam dynamics
package. As part of this effort, Bmad-X tracking methods
are being integrated into Cheetah for its upcoming version
0.7 release. This will allow the user to select one of the two
different tracking methods for each individual element in a
beamline. The combination of their capabilities will result
in a more flexible differentiable simulator and enable the
deployment of methods like phase space reconstruction to
production.

The efforts are accompanied by the vectorization of Chee-
tah. The new vectorized implementation will allow for
highly concurrent simulation of different beamline config-
urations and working conditions, allowing the user to take
full advantage of highly parallel hardware acceleration as it
is provided by GPUs. A pre-release development version of
Cheetah v0.7 with vectorization has already been found to
enable an up to 50-fold increase in compute speed just on
CPU when multiple concurrent configurations are run. This
improvement is expected to be more significant on GPU.

The next release of Cheetah further comes with a 3D
space charge module. This implementation uses the usual
Particle-In-Cell approach, whereby:

• the charge density of the beam is deposited on a grid

• the corresponding electric potential is obtained the
same grid by solving the Poisson equation (in the case
of Cheetah, by using the integrated Green’s function
method [12, 13])

• the corresponding force is computed from the electric
potential on a grid, and then gathered from the grid on
the beam particles

Importantly, because Cheetah implements each of these op-
erations with Pytorch, the overall space-charge module is

fully backward-differentiable. To our knowledge, this is the
first instance of a backward-differentiable accelerator code
with space-charge. Future work will explore the computa-
tional scaling of backward differentiability for simulations
with space-charge, using this new tool.

All of these features are expected to release in a stable
build of Cheetah soon.

CONCLUSION
In this work, we have described collaborative efforts to

implement backwards differentiable beam dynamics sim-
ulations for use in accelerator physics applications. The
most important avenue for future work regarding auto-
differentiable beam dynamics simulators is their application.
While we have explored a number of applications in prior
work [7, 14, 15], we believe that the potential impact of such
simulators goes far beyond these examples. As such, the
dissemination of these methods through easy-to-use simula-
tors like Cheetah will be a key part of future efforts in this
direction. The application of Cheetah to novel tasks will
also inform its future development.
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