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Plasma wakefield acceleration, with a proton driver

. ) Trapped lonizing Proton
1) - ionizes gas, forming plasma electrons pulse bunch

A 4

2) Proton bunch generates wakefields in
the plasma, at its resonant frequency @

3) Micro-bunches form, since plasma
wavelength is smaller than proton bunch
(self-modulation process) APS/Alan Stonebraker

Accelerating Trapped Driving
field electrons pulse

4) Proton micro-bunches act coherently
to generate wakefields which accelerate
and focus electrons
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> Plasma wakefield acceleration, with a proton driver

* Why plasma instead of a (superconducting) RF cavity?
 Higher fields: can sustain more MV/m, leading to shorter accelerators Maximum E field in plasma
. (wave-breaking)
» Metallic structures of RF accelerators break down at around 100 MV/m Ews™ 96 V(npe) [V/m]
~ 2.5 GV/m for npe = 7E14 cm-3

 Self-focusing: plasma can provide focusing fields (for e-), as well as accelerating

* Plasma wakefield acceleration has been studied since the 80’s, but not with protons
.. . . Wy = npec’ A= 21—
* Proton beams are rare, and the existing ones are very long, requiring Pe =\ meeo e Wpe
self-modulation to scale their size down to the plasma wavelength Wee™ 56000 V(Noe)
« AWAKE is the only experiment currently exploring this possibility Wpe ™ 1.5 THz for npe = 7E14 cm-3
Ape ™ 1.2 mm for nge = 7E14 cm-3

* Why protons, instead of electrons or lasers, to load the wakefields in the plasma?
 Highest stored energy per bunch (SPS and LHC : 20 and 300 kJ/bunch)
* No need for “staging” of multiple small accelerators, since E, >> E.
* We can use existing proton beams to reach the energy frontier with electrons!
» Simulations: SPS p* (450 GeV) can lead to 200 GeV e-. LHC p* can yield to 3 TeV e-
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) AWAKE at CERN =

 AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
e Proof of principle R&D experiment to study proton driven acceleration

e 23 institutes, >100 people. Approved in 2013, electron acceleration in 2018
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@ Experimental setup

Electron source system

Accelerated electrons on the scintillator screen
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1) Laser ionizes Rb vapor, forming a plasma Q‘ LQ{ : p N

[ ipole

2) Rb plasma creates micro-bunches in the proton beam -
3) Micro-bunched proton beam excites plasma wakefields
4) Wakefields accelerate and focus electrons
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@ AWAKE Run 1: Milestone #1

e 2016/2017: SELF-MODULATION

ATWVAKE—

 First seeded self-modulation of a high energy proton bunch in plasma

e Phase-stability and reproducibility are essential for electron acceleration!

e —> Demonstration that SPS proton bunch can be used for acceleration <—

Plasma OFF

Plasma ON
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) AWAKE Run 1: Milestone #2 >

e 2018: ACCELERATION: from 19 MeV to 2GeV
* Inject e- and accelerate to GeV in the wakefield driven by the SPS protons

 Maximum accelerated charge ~100 pC (~20% of injected)
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) The next step: AWAKE Run 2 M=

Demonstrate the possibility to use the AWAKE scheme for high energy physics applications

Electron source system

Laser beam J
1+ RFgun
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RF structure
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spectr ometer

Accelerate an electron beam to high energy (gradient of 0.5-1GV/m) ,

Preserve electron beam quality as well as possible (emittance preservation at 10 mm mrad level)

Demonstrate scalable plasma source technology (up to 100 m of plasma)




CERN

AWAKE Run 2: Phases

a. Demonstrate electron seeding of self-modulation in 1st plasma cell

* Need self-modulation of the entire proton bunch

b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell

e Show leveling of strong acceleration field

c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell

e Simultaneous energy gain and good emittance

d. Develop scalable plasma sources

e Current method (laser ionization) cannot support O(100) m plasma cells

Giovanni Zevi Della Porta, CERN 9



@ Run 2a: Self-modulation of entire bunch

a. Demonstrate electron seeding of self-modulation in 1st plasma cell

* Need self-modulation of the entire proton bunch before entering 2nd cell,
to prevent the head of the proton beam from disrupting the wakefields

AWAKE—

AWAKE Run 1:

plasma <+ = gas

' @ O @

self-modulated proton beam
proton beam
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AWAKE Run 2:
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Run 2b: Wakefields preservation o

b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell

e Self-modulation can eventually destroy the beam

* Simulations predict that we can “freeze” the micro-bunching process by accurately choosing
the plasma density profile
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S Run 2c: Beam quality =

c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell
* 1: Match e- beam transverse properties to the plasma entrance: preserve emittance
e 2: Blow out regime (e- density >> Rb density): linear focusing, € preservation

* 3: Beam loading: tune the charge/position of e- beam to reach small 6E/E
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C\E/RW AT
@ Run 2d: Longer plasma

d. Develop scalable plasma sources

e Current method (laser ionization) cannot support O(100) m plasma cells needed for O(100) GeV

* ‘Helicon’: low-frequency EM wave generated by RF antennas

* ‘Discharge’: high-current arc in plasma . . ————
Helicon results: profile/density/timing

Helicon design in line with AWAKE requirements
8
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@ Run 2a: what can we learn from eSSM?

Seeding and growth of
self-modulation

plasma<*+ | gas
-0 o oo -—.‘

electrons
self-modulated prgton beam A
laser

scan proton bunch charge

scan electron bunch charge
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Interplay of seeded and
unseeded self-modulation
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CERN

* 1) Seeding: transverse wakefields generated by
the e- bunch in plasma

e Studied in simulations and in experiments
without protons

K. Moon et al., Proc. 47th EPS Conference on Plasma Physics, 2021, http://ocs.ciemat.es/EPS2021PAP/pdf/P3.2014.pdf
L. Verra et al., Proc. 47th EPS Conference on Plasma Physics, 2021, arXiv:2106.12414
GZDP et al., Proc. IPAC’21, doi:10.18429/JACoW-IPAC2021- TUPAB160

* Electron bunch pinches in first few cm,

then generates wakefields in the first few
meters

Key Result of Run 2a (Q

* 2) Electron bunch stabilizes SM growth and
removes event-to-event phase variations

* Micro-bunches appear at the same time in
consecutive events (r.m.s(¢) ~ 7%)

* Phase (i.e. timing) can be controlled by
delaying the electron bunch
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L. Verra, GZDP, et al. (AWAKE Collaboration), “Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma”, Phys. Rev. Lett. 129, 024802 (2022) 15
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! Electron bunch seeding: Controlled growth ofSM &
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Focusing Channel

seansasanees : | Reference design

o : : :
=l Run 2c e Source Design e

RE Gun . Buncher

é_m é I I I Acc. 1 I I Acc. 1l I
 Stringent electron beam parameters to satisfy blow-out, :Z Ej] = .
beam-loading, optical matching as required by Run 2c i 2 z

e E: 150 MeV, AE/E< 0.2 %
* Normalized Emittance: 2 mm mrad
e Bunch length: 200 fs

e Reference design:
* Electron gun: S-band RF gun developed by INFN
e RF Buncher: 25 cm X-band (2 ps —> 200 fs)

e Accelerator: two 1 m X-band structures with
80 MV/m, embedded in solenoidal B field

e Details of design optimization:
Poster and proceedings by J. M. Arnesano and S. Doebert (TUPOPA24)

“Design of an X-Band Bunching and Accelerating System for the AWAKE Run 2”

Giovanni Zevi Della Porta, CERN . 17
D. Alesini et al., Phys. Rev. Accel. Beams 21, 112001 (2018) K. Pepitone et al., NIM-A 909, 102-106 (2018). doi:10.1016/j.nima.2018.02.044



@ Run 2c e- Beamline Design

* 25 m transfer line with 150 dog-leg

e-source 1 —‘ 18 MeV seeding e-line

Laser beam
Laser mirror —v 1

400 GeV p-line

.

X
e-source 2 150 MeV Plasma cell 1
r { witness e-line pt self-modulation -
Plasma cell 2
,39 { e acceleration

* Simulation: electron source simulation output sent to 6D particle tracking in MAD-X
* Optimization, part 1: Genetic Algorithm for initial design (2 dipoles, 8 quadrupoles)

* +: bunch is shortened (initial AE/z

correlation from e- source)

e - : bunch is widened due to chromatic effects

INPUT (from e- source simulation)
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Optics, beta, dispersion along the line
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. Ramjiawan et al., submitted for publication (2022). arXiv:2203.01605
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Design parameters at injection

Parameter Specification
B,y 4.87 mm
Qg .y 0.0
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Oz,y 5.75 nm
(o 60 pm
€z,y 2mm mrad

OUTPUT (from MAD-X)
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X
CERN e-source 1 18 MeV seeding e-line e-source 2 150 MeV Plasma cell 1
\ [ J [ ‘ r r witness e-line p* self-modulation
</ - z
Laser beam —._.-..\- Plasma cell 2
Laser mirror —v ‘tg /7 e acceleration

251goﬂ | 10.00 m || 10.00 m

400 GeV p-line : —] klf '
1.00 m

* Optimization, Part 2: sextupoles and octupoles
Design parameters at injection

* Address chromatic effects

Parameter Specification
 Position and strength optimized numerically (Powell algorithm) Bey 48T mm
Qg y .
 Estimated effect of misalignments of all optical elements, and developed 1 um Do 535“;111
. . z,Yy .
level alignment procedure to avoid oxy growth o 60 pm
€z,y 2mm mrad
« —> Achieved the challenging experimental requirements for Run 2¢c <—
INPUT (from e- source simulation) Optics, beta, dispersion along the line OUTPUT (from MAD-X)
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@ Conclusions >

Trapped lonizing Proton
electrons pulse bunch

pa /
« AWAKE was created to test a new idea for electron acceleration |

» Use plasma to transfer energy from protons to electrons and
potentially reach the electron energy frontier

Accelerating Trapped Driving
field electrons pulse

e So far, in Run 1 and Run 23, all expectations have been met

e The rest of Run 2 aims to demonstrate the possibility to use the
AWAKE scheme for high energy physics applications

 AWAKE Run 2 is the path towards future physics applications
e First: fixed target experiments, i.e. search for dark photon
* Next step: electron-proton or electron-ion colliders

* Complementary to other plasma wakefield projects/experiments: Eump%%ga%rategy g,m,,em,semp
European Strategy for Particle Physics “Accelerator R&D Roadmap”
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