

Run 2 of the Advanced Plasma Wakefield Experiment (AWAKE) at CERN

G. Zevi Della Porta (CERN, Geneva, Swizerland)

for the AWAKE Collaboration

Liverpool, UK - 31 August 2022

Plasma wakefield acceleration, with a proton driver

- 1) Laser ionizes gas, forming plasma
- 2) **Proton bunch** generates **wakefields** in the plasma, at its resonant frequency
- 3) Micro-bunches form, since plasma wavelength is smaller than proton bunch (self-modulation process)

4) Proton micro-bunches act coherently
 to generate wakefields which accelerate
 and focus electrons

APS/Alan Stonebraker

AWAKE

Plasma wakefield acceleration, with a proton driver

- Why plasma instead of a (superconducting) RF cavity?
 - Higher fields: can sustain more MV/m, leading to shorter accelerators
 - Metallic structures of RF accelerators break down at around 100 MV/m
 - Self-focusing: plasma can provide focusing fields (for e-), as well as accelerating
- Plasma wakefield acceleration has been studied since the 80's, but not with protons
 - Proton beams are rare, and the existing ones are very long, requiring self-modulation to scale their size down to the plasma wavelength
 - AWAKE is the only experiment currently exploring this possibility
- Why protons, instead of electrons or lasers, to load the wakefields in the plasma?
 - Highest stored energy per bunch (SPS and LHC : 20 and 300 kJ/bunch)
 - No need for "staging" of multiple small accelerators, since E_p >> E_e
 - We can use **existing proton beams** to reach the **energy frontier with electrons**!
 - Simulations: SPS p⁺ (450 GeV) can lead to 200 GeV e⁻. LHC p⁺ can yield to 3 TeV e⁻

Maximum E field in plasma

~ 2.5 GV/m for $n_{pe} = 7E14 \text{ cm}^{-3}$

(wave-breaking)

 $E_{WB} \sim 96 v(n_{pe}) [V/m]$

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Proof of principle R&D experiment to study proton driven acceleration
 - 23 institutes, >100 people. Approved in 2013, electron acceleration in 2018

Intro to AWAKE Run 1 and Run 2

AWAKE

Giovanni Zevi Della Porta, CERN

Experimental setup

CERN

AWAKE Run 1: Milestone #1

- 2016/2017: SELF-MODULATION
 - First <u>seeded</u> self-modulation of a high energy proton bunch in plasma
 - <u>Phase-stability</u> and reproducibility are essential for electron acceleration!
 - —> Demonstration that SPS proton bunch can be used for acceleration <—

AWAKE Run 1: Milestone #2

- 2018: ACCELERATION: from 19 MeV to 2GeV
 - Inject e- and accelerate to GeV in the wakefield driven by the SPS protons
 - Maximum accelerated charge ~100 pC (~20% of injected)

The next step: AWAKE Run 2

CERN

Demonstrate the possibility to use the AWAKE scheme for high energy physics applications

- a. Demonstrate electron seeding of self-modulation in 1st plasma cell
 - Need self-modulation of the entire proton bunch
- b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell
 - Show leveling of strong acceleration field
- c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell
 - Simultaneous energy gain and good emittance
- d. Develop scalable plasma sources
 - Current method (laser ionization) cannot support O(100) m plasma cells

Run 2a: Self-modulation of entire bunch

- a. Demonstrate electron seeding of self-modulation in 1st plasma cell
 - Need self-modulation of the entire proton bunch before entering 2nd cell, to prevent the head of the proton beam from disrupting the wakefields

CERN

Run 2b: Wakefields preservation

- b. Demonstrate the stabilization of the micro-bunches with a density step in 1st plasma cell
- Self-modulation can eventually destroy the beam
- Simulations predict that we can "freeze" the micro-bunching process by accurately choosing the plasma density profile

AWAKE

CÉRN

- c. Demonstrate electron acceleration and emittance preservation in 2nd plasma cell
 - 1: Match e- beam transverse properties to the plasma entrance: preserve emittance
 - 2: Blow out regime (e- density >> Rb density): linear focusing, ε preservation
 - 3: **Beam loading**: tune the charge/position of e- beam to reach small $\delta E/E$

V. K. Berglyd Olsen, E. Adli, P. Muggli, Phys. Rev. Accel. Beams 21, 011301 (2018)

Run 2d: Longer plasma

- d. Develop scalable plasma sources
 - Current method (laser ionization) cannot support O(100) m plasma cells needed for O(100) GeV

AWAKE

- 'Helicon': low-frequency EM wave generated by RF antennas
- 'Discharge': high-current arc in plasma

Run 2a: what can we learn from eSSM?

Seeding and growth of **hosing**

Interplay of seeded and unseeded self-modulation

CERN

AWAKE

Electron bunch seeding: Reproducibility of SM

- 1) Seeding: transverse wakefields generated by the e⁻ bunch in plasma
 - Studied in simulations and in experiments without protons

K. Moon *et al.*, *Proc.* 47th EPS Conference on Plasma Physics, 2021, http://ocs.ciemat.es/EPS2021PAP/pdf/P3.2014.pdf L. Verra *et al.*, *Proc.* 47th EPS Conference on Plasma Physics, 2021, arXiv:2106.12414 GZDP *et al.*, *Proc.* IPAC'21, doi:10.18429/JACoW-IPAC2021- TUPAB160

- Electron bunch pinches in first few cm, then generates wakefields in the first few meters
- 2) Electron bunch stabilizes SM growth and removes event-to-event phase variations
 - Micro-bunches appear at the same time in consecutive events (r.m.s(φ) ~ 7%)
 - Phase (i.e. timing) can be <u>controlled</u> by delaying the electron bunch

AWAKE

L. Verra, GZDP, et al. (AWAKE Collaboration), "Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma", Phys. Rev. Lett. 129, 024802 (2022) 15

Electron bunch seeding: Controlled growth of SM

- Longitudinal image of entire proton bunch (at 1 ns timescale) allows to study how SM grows along the bunch
- Defocused protons exit the plasma and propagate in vacuum
 - Their radial extent carries information on the transverse momentum they acquire from wakefields during SM growth
 - Study the "transverse extent" of each time slice, *w*, defined as distance between points reaching 20% max amplitude
- Amplitude of transverse wakefield along bunch and along the plasma :
 - $W_{\perp}(t,z) = W_{\perp 0} \exp\left(\Gamma(t,z)z\right)$
 - Seed wakefield depends on e- bunch charge: $W_{\perp 0}(Q_e)$
 - Growth rate depends on p+ bunch charge: $\Gamma(Q_p)$
 - Use $\textbf{\textit{w}}$ to study W_{\perp}
 - w increases along the bunch and when increasing either \mathbf{Q}_{p} or \mathbf{Q}_{e}
 - Defocusing starts earlier in the bunch when increasing \mathbf{Q}_{p} and \mathbf{Q}_{e}

AWAKE

L. Verra, GZDP, et al. (AWAKE Collaboration), "Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma", Phys. Rev. Lett. 129, 024802 (2022) 16

Run 2c e⁻ Source Design

- Stringent electron beam parameters to satisfy blow-out, beam-loading, optical matching as required by Run 2c
 - E: 150 MeV, ΔE/E < 0.2 %
 - Normalized Emittance: 2 mm mrad
 - Bunch length: 200 fs
- Reference design:
 - Electron gun: S-band RF gun developed by INFN
 - RF Buncher: 25 cm X-band (2 ps -> 200 fs)
 - Accelerator: two 1 m X-band structures with 80 MV/m, embedded in solenoidal B field
- Details of design optimization:

Poster and proceedings by J. M. Arnesano and S. Doebert (TUPOPA24)

"Design of an X-Band Bunching and Accelerating System for the AWAKE Run 2"

Run 2c e⁻ Beamline Design

- 25 m transfer line with 15° dog-leg
- Simulation: electron source simulation output sent to 6D particle tracking in MAD-X
- Optimization, part 1: Genetic Algorithm for initial design (2 dipoles, 8 quadrupoles)
 - + : bunch is shortened (initial $\Delta E/z$ correlation from e- source)
 - - : bunch is widened due to chromatic effects

Design parameters at injection

Parameter	Specification
$eta_{x,y}$	$4.87\mathrm{mm}$
$lpha_{x,y}$	0.0
$D_{x,y}$	$0\mathrm{m}$
$\sigma_{x,y}$	$5.75\mathrm{\mu m}$
σ_z	$60\mu{ m m}$
$\epsilon_{x,y}$	$2\mathrm{mm}\mathrm{mrad}$

18

Giovanni Zevi Della Porta, CERN

CERN

R. Ramjiawan et al., submitted for publication (2022). arXiv:2203.01605

Run 2c e- Beamline Design

- Optimization, Part 2: sextupoles and octupoles
 - Address chromatic effects
 - Position and strength optimized numerically (Powell algorithm)
- Estimated effect of misalignments of all optical elements, and developed 1 μm level alignment procedure to avoid $\sigma_{x,y}$ growth
- —> <u>Achieved the challenging experimental requirements for Run 2c</u> <—

Design parameters at injection

Parameter	Specification
$eta_{x,y}$	$4.87\mathrm{mm}$
$lpha_{x,y}$	0.0
$D_{x,y}$	$0\mathrm{m}$
$\sigma_{x,y}$	$5.75\mathrm{\mu m}$
σ_z	$60\mu{ m m}$
$\epsilon_{x,y}$	$2\mathrm{mm}\mathrm{mrad}$

Giovanni Zevi Della Porta, CERN

CERN

R. Ramjiawan et al., submitted for publication (2022). arXiv:2203.01605

Conclusions

• AWAKE was created to test a new idea for electron acceleration

- Use plasma to transfer energy from protons to electrons and potentially reach the electron energy frontier
- So far, in Run 1 and Run 2a, all expectations have been met
 - The rest of Run 2 aims to demonstrate the possibility to use the AWAKE scheme for high energy physics applications
- AWAKE Run 2 is the path towards future physics applications
 - First: fixed target experiments, i.e. search for dark photon
 - Next step: electron-proton or electron-ion colliders
 - Complementary to other plasma wakefield projects/experiments: European Strategy for Particle Physics "Accelerator R&D Roadmap"

EUROPEAN STRATEGY FOR PARTICLE PHYSICS

Accelerator R&D Roadmap

Proton