Electron Ion Collider Strong Hadron Cooling Injector and ERL

Erdong Wang on behalf of SHC BNL/JLab design Team

Brookhaven National Laboratory
International Linear Accelerator Conference 2022
Aug. 28th-Sep. 2nd 2022

Electron-Ion Collider
Outline

• EIC overview
• Strong hadron cooling introduction
• Strong hadron cooling accelerator design
 • SHC Injector and Linac
 • Cooling section
 • Beam noise
 • ERL design
 • Proposed SHC+precooler design: injector and Linac
• Summary
EIC Introduction

• **Science goals**
 • How does the mass of the nucleon arise?
 • How does the spin of the nucleon arise?
 • What are the emergent properties of dense systems of gluons?

• **EIC Design Goals**
 o High luminosity: $L = (0.1-1) \times 10^{34} \text{ cm}^{-2} \text{s}^{-1} \Rightarrow 10-100 \text{ fb}^{-1}$
 o Collisions of highly polarized +/-70% e, p and light ion beams with flexible spin patterns
 o Large range of center of mass energies: $E_{\text{cm}} = (20-140) \text{ GeV}$
 o Large range of ion species: protons–Uranium
 o Ensure accommodation of a second IR
 o Large detector acceptance
 o Good background conditions
EIC Accelerators

Design based on existing RHIC,
RHIC is well maintained, operating at its peak

- Hadron storage ring 40-275 GeV (existing)
 - RHIC Yellow(Blue) Ring
 - Many bunches, 1160 @ 1A beam current
 - Bright beam emittance
 - Strong hadron cooling (new)
- Electron storage ring (2.5–18 GeV, new)
 - Many bunches,
 - Large beam current (2.5 A) 10 MW S.R. power
 - s.c. RF cavities
- Electron rapid cycling synchrotron (new)
 - High charge polarized pre-injector
 - Spin transparent due to high periodicity

\[E_{cm} = 20 \text{ GeV} - 141 \text{ GeV} \]
High luminosity goal: \(L = 10^{34}\text{cm}^{-2}\text{s}^{-1} \)
EIC cooling requirements

- Luminosity of lepton-hadron colliders in the energy range of the EIC benefits strongly (factor ≈ 3-10) from cooling the transverse and longitudinal hadron beam emittance.
- Cool the proton beam at 275 GeV, 100 GeV, and 41 GeV.
- IBS longitudinal and transverse (h) growth time is 2-3 hours. The cooling time shall be equal to or less than the diffusion growth time from all sources.
- Must cool the hadron beam normalized rms vertical emittance from 2.5 um (from injector) to 0.3 um in 2 hours.
- The cooling section must fit in the available IR 2 space.

SHC: Strong Hadron Cooling, the cooling technique that provides strong cooling rate at high energies

Precooler: Cool proton at injection energy (24 GeV) using electron cooling
SHC: Coherent Electron Cooling (CEC)

Similar to stochastic cooling, tiny fluctuations in the hadron beam distribution (which are associated with larger emittance) are detected, amplified and fed back to the hadrons thereby reducing the emittance in tiny steps on each turn of the hadron beam

- High bandwidth (small slice size)
- Detector (Modulator), amplifiers and fed back (kicker)

For high energy protons, a large bandwidth (tens of THz) is required:
- Using an electron beam to detect fluctuations, to amplify and to kick.

The pickup and the kicker are implemented via the Coulomb interaction of the hadrons and electrons, $\gamma_e = \gamma_h$. The electron modulated signal has to be amplified.
SHC schematic layout

- 400-500kV DC gun for 100 mA of beam and 5.6 MV SRF injector
- Dogleg ERL merger
- 149 MeV Superconducting Energy Recovery LINAC
- Electron and hadron overlapped cooling section. FODO cells are used to control ebeam size
- Amplification section with chicanes and triplets for electrons
- Hadron chicane path length matching & R_{56} adjust
- Return of electrons to ERL
- Electron beam instrumentation and diagnostics
The EIC cooler ERL features unprecedented large beam current and small energy spread. The 1D cooling simulation yields a cooling rate higher than the IBS heating.

<table>
<thead>
<tr>
<th>Case</th>
<th>100 GeV</th>
<th>275 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Energy (MeV)</td>
<td>55</td>
<td>150</td>
</tr>
<tr>
<td>Electron Norm. Emit. (x/y) (mm-mrad)</td>
<td>2.8 / 2.8</td>
<td>2.8 / 2.8</td>
</tr>
<tr>
<td>Repetition rate (MHz)</td>
<td>98.5</td>
<td>98.5</td>
</tr>
<tr>
<td>Electron Bunch Charge (nC)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electron Peak Current (A)</td>
<td>8.5</td>
<td>17</td>
</tr>
<tr>
<td>Electron Bunch Length (mm, rms)*</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Electron Fractional Energy Spread</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Hor./Vert. Elec. Betas in Modulator (m)</td>
<td>86.6 / 14.1</td>
<td>64 / 11</td>
</tr>
<tr>
<td>Hor./Vert. Electron Betas in Kicker (m)</td>
<td>49.7 / 10</td>
<td>16 / 2</td>
</tr>
<tr>
<td>Modulator Length (m)</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Kicker Length (m)</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>H/V/L Cooling time(hr)</td>
<td>1.3/2.5/1.7</td>
<td>0.8/2.1/1.2</td>
</tr>
</tbody>
</table>

Gaussian bunch assumed
ERL Longitudinal matching

- Due to the long proton bunches, we need very long electron bunches with very small energy spread.

- We use the 5 cell 591 MHz SRF cavity as the main linac.

- At 7 mm _rms_, the 6σ full bunch length is 30° of RF phase. We have to cancel the RF curvature using third harmonic cavity.

- Take space charge and CSR into account to minimize any energy slew or curvature in the bunch.

- A 14 mm _rms_ bunch is 60° so it must be stretched.
 - Need _R_56 of 57 cm to stretch 3.5 cm bunch to 7 cm
 - For a 55 MeV beam, need 7.9 MeV in de-chirper at 591 MHz to take out the slope

- The return beam has to be chirped and compressed before back to the Linac
 Injector

- HVDC gun with multi-alkali photocathode
- Ballistic compression
- Injector (buncher + booster) energy 5.6 MeV
- Dual solenoids dogleg merger (three energies)
e-beam quality before entering cooling section

Injector and Linac up to cooling section are simulated by advanced 3D space charge code GPT 3.4.

<table>
<thead>
<tr>
<th>parameter</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch charge</td>
<td>1 nC</td>
</tr>
<tr>
<td>Peak current</td>
<td>8.5-34 A</td>
</tr>
<tr>
<td>RMS Bunch length</td>
<td>14-3.4 mm</td>
</tr>
<tr>
<td>RMS Normalized emittance</td>
<td>3 mm-mrad</td>
</tr>
<tr>
<td>Energy</td>
<td>150 MeV</td>
</tr>
<tr>
<td>RMS (\frac{dp}{p})</td>
<td><1 e-4</td>
</tr>
</tbody>
</table>
Full number particles simulation

- Beam noise is extremely important for the SHC. Only allow 2x Poisson noise.
- IMPACT simulation: energy spread, emittance, and bunch length are well matched to GPT results.
- Using the full number of particles can study the beam noise at the cooling entrance.
- Observed 280 um noise.
Shot noise simulation

- Observed > 280 um modulation;
- Noise amplitude is 2x shot noise.
- Cooling frequency bandwidth is 40 THz (3 um), which is far away from 280 um.
- The rest noise is at the same level as the shot noise.
- Should not affect cooling performance.
Energy recovery lattice

1st and 2nd passes of the electron beam matched transversely in the Linac section using BMAD.
Cooling section lattice

- Cooling section includes 55 m of modulator (M), 100 m of amplification, and 55 m kicker (k).
- FODO cells are used for K and M section; the beta function can be tuned from 2.5 to 50 m for K and 11 to 85 for M.
- Triplets are used for the amplification section; the beta function is 1-2 meters.
- (−+)R56 tunable chicanes are designed for amplification section.
- Total R56 from M to K has to be zero.
ERL optics: closed lattice
New design: SHC+pre-cooler injector and Linac

- Precooler bunch charge is 2 nC for 10^{-4} dp/p, 197 MHz cavities will be needed.
- SHC takes advantage of using 197 MHz and compresses the beam at 14 MeV using chicane.
- The chicane has four dipoles for 14 MeV beam and other three dipoles for high energy return beam. They have the same time of flight.
- Using 591 MHz+1774 MHz cavity to accelerate beam to the cooling energy.
e-beam quality evaluation

<table>
<thead>
<tr>
<th></th>
<th>SHC only</th>
<th>SHC+ precooler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch charge</td>
<td></td>
<td>1 nC</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>RMS emittance x/y</td>
<td>3.1/2.8 mm-mrad</td>
<td>2.4/2.5 mm-mrad</td>
</tr>
<tr>
<td>rms dp/p</td>
<td>1.1e-4</td>
<td>4e-5</td>
</tr>
<tr>
<td>Slice dp/p</td>
<td>5.3e-5</td>
<td>2e-5</td>
</tr>
<tr>
<td>rms Bunch length</td>
<td>6.9 mm</td>
<td>7 mm</td>
</tr>
</tbody>
</table>
ERL Challenges

- Low noise electron beam
- High current ERL
- Beam halo
- BBU
- Ion trapping
- High current high charge electron source (EIC R&D)
- Beam diagnostics: beam noise, beam halo, e-h alignment (~250 nm), energy spread measurement (<1e-4).
Summary

• SHC will boost EIC luminosity by factor of 3-10.
• The Strong hadron cooler will establish a major advance in accelerator science and technology.
• SHC needs a high-quality electron beam with high current, small energy spread, and small noise in the beam. It requires development of an ERL with parameters beyond the state of the art.
• A SHC baseline design has been developed that meets the beam requirements for the SHC.
• A SHC and precooler hybrid ERL has been proposed. ERL design is in progress.
• The ERL challenges have been evaluated and are being addressed with our detailed design and R&D.

SLAC: G. Stupakov

Jlab: S. Benson, Shaohen Wang, K. Deitrick

Xelera: C. Mayes, D. Douglas, C. Gulliford, N. Taylor