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Plasma accelerators

> Conventional accelerators based on RF-cavities have been > Plasma-based accelerators (PBAs) represent a disruptive
the backbone of accelerator science over the past 70 years. development due to the ability of plasma to support field

strengths of order 1-100 GV/m.

Electron density perturbation

S
\ \ !
Short laser pulse or
Image produced by A. Martinez de la Ossa charged particle beam

> Extremely reliable, successful and well-understood.

> Accelerating gradients limited by electrical breakdown to

~ 100 MV/m. > Plasma acts as an energy transformer, enabling the

transfer of energy from a drive beam to a trailing “witness”
bunch.

> Has the potential to reduce size and cost of accelerator
facilities by orders of magnitude.
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. The Facility

> Superconducting accelerator based on ILC/XFEL

5MeV 150 MeV 450 MeV 1250 MeV
ACCL  BC2 ACC23  BC3 ACC4S ACCE7 technology
' . '}'A?"[' — - = 1.25 GeV energy with ~nC charge at few 100 fs bunch
o0 Acca9 duration
Photo ACC — SCRF modules ,
= ~2 um trans. norm. emittance
cathode BC — Bunch compressors » ,
- ~10 kW average beam power, MHz repetition rate in 10
25 TW Hz bursts
laser - Exquisite stability by advanced feedback/feedforward
systems

> Unique opportunities for plasma accelerator science
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Image modified from R. DArcy et al., Phil. Trans. R. Soc. A 377,20180392 (2019)
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*»: Beam-driven plasma wakefield experimentation ) %’ OXFORD

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage
with high efficiency, high quality,and high average power

A v A
High efficiency High beam quality High average power
Driver depletion Low energy spread Recovery time

Transfer efficiency Emittance preservation High repetition rate
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Applications require high quality at highest efficiency

= N LAY BRI N B
o
> Beam quality: requirements depend on application but in general, § CLIC, 15=380 GeV || e is=s00Gev
2 001} { o002}
> Linear colliders (< 1% energy spread, en ~ 0.01 mm mrad) — to reach high luminosity with a &
narrow spectrum.
(o) - _ . .
> Free-electron lasers (0.1% energy spread, en ~ 1 mm mrad) — to reach high brightness. 0005k ooil
OF 0
> Efficiency: need to maximise transfer of energy from the wall to the accelerating beam. e -
> Wall = Driving beam Luminosity distribution across collision energies.

M. Boronat et al., Phys. Lett. B 804,135353 (2020)

Z Drlvmg beam — Plasma wakefield Illustration of primary energy transfer mechanisms

. Modified from image produced by A. Martinez de la Ossa Wall
> Plasma wakefield = Witness beam

Driver

' .

|
itness A/
|

Short laser pulse or
charged particle beam
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Applications require high quality at highest efficiency

> Solution: “beam-loading” M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008)

The principle of beam-loading
S. Schroder, PhD Thesis, Uni. Hamburg (2021)
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> Drive bunch “depletion™: extract maximum energy from drive bunch by *
> Tailoring plasma density profile. ol /_/\+ \ Drive
2 K ' a @ . bunch
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Witness \/
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> Shaping current profile to minimise re-acceleration of drive electrons.
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> Witness bunch: extract maximum energy from plasma wake by ~
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> Modifying trajectories of returning plasma electrons. — . 12
> Shaping current profile to locally flatten longitudinal wakefield. N\ :
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Applications require high quality at highest efficiency ) (% OXFORD

Demonstration of drive bunch depletion via plasma density optimisation

> Solution: “beam-loading” M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008) - 0 100 0 "o 3o 0 3s

T 0.8

500t - initial
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> Drive bunch “depletion”: extract maximum energy from drive bunch by

. . . - 0.5 E ‘ 2%
> Tailoring plasma density profile. v/ - 300 T 2
S | S B
> 04 & =
> Shaping current profile to minimise re-acceleration of drive electrons. g g 8
% electrons decelerated 1 5)','
0.2 C
> Witness bunch: extract maximum energy from plasma wake by | -
° ° ° ° ° ;
> Modifying trajectories of returning plasma electrons. sy .
-5 0 5 '
X (um) @ Ptl_asmvaAddensi?:y‘(%o16 cm™3)
> Shaping current profile to locally flatten longitudinal wakefield. Image produced by F. Pena R
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Applications require high quality at highest efficiency

Precise control of drive & witness bunch current profiles

> Solution: “beam-loading” M. Tzoufras et al., Phys. Rev. Lett. 101, 145002 (2008) S. Schréder et al, ). Phys.: Conf. Ser. 1596,012002 (2020
Notch &—» =157 Notch |
colllmator Tall é posf’zlgn !
collimator =
-~ I © 1F
' § Notch
> Drive bunch “depletion”: extract maximum energy from drive bunch by o N il §°'5 <6>W'dth
collimator Head U oM O \ .
. . . -5 400 -300 -200 -100 0
> Tallorlng plasma denSIty prOﬁ le. Longitudinal position, ¢ (u \
) o ) ) Quasi-trapezoidal High-peak-current
> Shaping current profile to minimise re-acceleration of drive electrons. witness driver

Measurement of optimal beam-loading, demonstrating energy-spread preservation

C.A. Lindstrem et al., Phys. Rev. Lett. 126,014801 (2021)
Wakefield measurement technique: S. Schroder et al., Nat. Commun. 11, 5984 (2020)

> Witness bunch: extract maximum energy from plasma wake by F
. 05¢F
. . ° . . "_E i
> Modifying trajectories of returning plasma electrons. v 3
% w057 I Optimal operating point
. ° ° §~ g -1r i:g ::xa:::z: (no trailing bI:Jnch)
> Shaping current profile to locally flatten longitudinal wakefield. v ] e Colbunen @ verdry) ||
e T ° >0 5 -400 -350 -300 -250 -200 -150 -100 -50 O o
i . . ] . ) Theoretical prediction s
> Experimentally demonstrated energy-spread preservation, in combination with et Measurements
100% charge coupling, 1.3 GV/m average accelerating gradient and instantaneous A=t
energy transfer efficiency of (42+4)%. 5 it ||,
% sol FWHM ;%
. § [ D C N ;
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Applications require high quality at highest efficiency ) (¥) OXFORD

> Next step: demonstrate emittance preservation during acceleration. Requires:
> Careful matching of the beam into the plasma accelerator to avoid phase-space dilution.

> Well-aligned, straight beams to avoid seeding transverse instabilities and beam break-up.

Novel techniques to reconstruct slice-dependent focusing Diagnosing beam tilts and curvature with X-band transverse deflecting structure
Stice energy-offset (%) C.A.Lindstrem et al., Phys. Rev. Accel. Beams 23,052802 (2020) B. Marchetti et al, Sci. Rep. 11, 3560 (2021)
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*»: Beam-driven plasma wakefield experimentation ) %’ OXFORD

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage
with high efficiency, high quality,and high average power

A v

High efficiency High beam quality
Driver depletion Low energy spread v/

Transfer efficiency Emittance preservation
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*»: Beam-driven plasma wakefield experimentation ) %’ OXFORD

Primary goals of FLASHFORWARD

Develop a self-consistent plasma-accelerator stage
with high efficiency, high quality,and high average power

High average power

Recovery time

High repetition rate



High-average-power operation
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10° a . 0.01 - 0.1 GV/m Phase space of interest for application to |

. . . . ' : hoton sci d high hysics

> To be competitive with conventional accelerator facilities need joule-level o5l A 0.1-1GV/m . sc'T':éa" 9 e
accelerators at kHz repetition-rates and beyond. > i >1GV/m ®
107 ¢ .

~— = =

> Current state-of-the-art plasma-based accelerator (PBA) facilities are orders 106 LCLS.I]
of magnitude below this. ~- 08 XFEL O

e | y

o i E

o 10°F E

> :

: : : : 5 . B i
What is the most efficient way to achieve this? % 10 A EACET
: . : : 102 | AWAKE O] -

> For beam-driven PBAs: compatibility with RF front-end that provides the e shce of cunknt FLASHForward
bunches for wakefield acceleration. 10" peam-driven PBA facilities o E

0 - | | 4& SPARF | | Imageiz provided biy R. DArcy
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10~ 10t 10 10! 104 10° 10* 10° 10° 107
bunches per second N / s~ 1

E.g. FLASH linear accelerator at DESY (up to 1.25 GeV, 1 nC e- bunch):

> Trains of hundreds of O(us)-separated electron bunches at 10 Hz macro-pulse repetition-rate;
up to 18,000 bunches per second.

Can this bunch pattern be compatible with plasma-based acceleration?
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Conventional accelerators ) & OXFORD

Inter-bunch frequency FLASH i
Inter-bunch
V V frequency 5 MHZ 2 GHz
— Bunch-train 600 s 156 ns

AL AL AL ARAAARAL

N e e | 18000 15600

i i i (e

Macro-pulse frequency
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Conventional accelerators

| dified f H.Zh L, IPAC15 (2015 . -
TR e R == Eag. D X-band (~ 12 GHz) accelerating cavities

E 100 L
= i ]
s | e 1B A & s . > Minimum possible separation is ~ 80 ps.
> 0 ) ' - "', ] 3 ’ Avihae
Inter-bunch frequency 3 50 e 1 > Long-range transverse wakefields induced in the metallic cavities from an acceleration
§ 100 ‘ event lives longer than this and must be avoided as they lead to emittance blow-up.
> 150}
§ 200+  Gdfidl simulations > Actual separation set at 0.5 ns i.e. 2 GHz inter-bunch frequency.
§ -250F F |- Measurements ~0.5ns:
0 0.05 0.1 0.15
| : bunch spacing [m]
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Conventional accelerators

| dified f H.Zh L, IPAC15 (2015 . -
TR O P R R =2 Eag. M x-band (~ 12 GHz) accelerating cavities

> Minimum possible separation is ~ 80 ps.

Inter-bunch frequency

> Long-range transverse wakefields induced in the metallic cavities from an acceleration
event lives longer than this and must be avoided as they lead to emittance blow-up.

[ Gdfidl simulations > Actual separation set at 0.5 ns i.e. 2 GHz inter-bunch frequency.

""" Measurements ~05ns’' |

0 0.05 0.1 0.15
bunch spacing [m]

Transverse wakefield [V/pC/m/mm|

Shadowgraphy signal of wake dissipation and ion channel formation
Image modified from M. F. Gilljohann et al., Phys. Rev. X 9,011046 (2019)

25
O N NP
95 L | | | Plasma wakefield
| 600 | 400 200 | 0
2.9 1.5 0.5
Position [pm] Time |ps]

lon motion defines the equivalent Limit in plasma-based accelerators.

> Energy imparted into the plasma via the wakefield is transferred to ions,
Initiating their motion and generating highly non-uniform density profiles.

> Must wait for their motion to dissipate before repeatable acceleration is
possible.
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Directly measuring wakefield-induced plasma evolution ) %/ OXFORD

Unperturbed

> Novel three-bunch plasma diagnostic technique.
plasma

> Leading bunch drives a wakefield in the plasma. ,
Decaying wakefield and

> Probe bunch-pair follows n x 0.77 ns later and onset of ion motion

drives a wakefield in the perturbed plasma state.

> Scan temporal separation and measure
properties of probe bunch-pair to learn about
long-timescale evolution of plasma after
wakefield is driven.

> Temporal separations defined by 1.5 GHz RF
frequency of FLASH.

, Perturbed
. — plasma
| |

“Trailing” probe e Visual

bunch

Driving” probe Image modified from R. DArcy et al., Nature 603, 58—62 (2022)
bunch



Probing wakefield-induced ion motion
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Images modified from R. DArcy et al., Nature 603,58—-62 (2022)
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Probing wakefield-induced ion motion
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Images modified from R. DArcy et al., Nature 603,58—-62 (2022)
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Details of signal extraction process in J. Chappell, PhD Thesis, University College London (2021)
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Probing wakefield-induced ion motion

Images modified from R. DArcy et al., Nature 603,58—-62 (2022)

Without leading bunch present With leading bunch present
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: _ 8° : . &° perturbation Llifetime.
1,000 - Decelerated driving probe bunch 1,000 |
1 1 1 1 ! L I ! 1 ! ! L 0 ° ° ° ° °
) e R > Probe bunch response is consistent with and without perturbation
£ st o | 1 5 & 3 e——— s — || 7 S E
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High-average-power operation

Conventional accelerators Plasma accelerators

Dissipation of long-range transverse wakefields Dissipation of long-term plasma (ion) motion

Inter-bunch frequency

Bunch-train I_ength Balance of RF pulse length, accelerating field, and breakdown rate

Macro-pulse frequency Dissipation of the cumulative heating from each bunch train
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High-average-power operation

Conventional accelerators Plasma accelerators

Dissipation of long-range transverse wakefields Dissipation of long-term plasma (ion) motion

Inter-bunch frequenc
q y Generation of similar plasma properties for each event

Temperature-based modifications to the wakefield properties
Bunch-train [ength Balance of RF pulse length, accelerating field, and breakdown rate
Heating of the plasma source
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High-average-power operation

Conventional accelerators Plasma accelerators

Dissipation of long-range transverse wakefields Dissipation of long-term plasma (ion) motion

Inter-bunch frequency
Generation of similar plasma properties for each event

Temperature-based modifications to the wakefield properties
Bunch-train I_ength Balance of RF pulse length, accelerating field, and breakdown rate

Heating of the plasma source

Macro-pu[se frequency Dissipation of the cumulative heating from each bunch train Dissipation of the cumulative heating from each bunch train

Using beam-based diagnostic technique to probe ps-timescale
wakefield evolution and explore cumulative heating effects
J. Chappell, PhD Thesis, University College London (2021)

Developing measurement capabilities and simulation tools to design and implement MHz-capable plasma sources

In-situ plasma density diagnostics Plasma temperature diagnostics

Image credit: J. Horsch

Long-timescale MHD simulations
Image credit: M. Mewes

Time [us]

Time after Discharge / us

J.M. Garland et al., Rev. Sci. Instrum. 92 013505 (2021)
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Progress in Plasma-Accelerator R&D at FLASHFORWARD » »

Summary and outlook

Develop a self-consistent plasma-accelerator stage
with hi“gh efficiency, high quality,and high average power

- 1 : a
High efficiency High beam quality High average power
Driver depletion [} Low energy spread M Recovery time M
Transfer efficiency [} Emittance preservation [ High repetition rate [

Impactful and exciting research programme will help advance plasma accelerators to application-readiness
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