LCLS-II Commissioning

Dan Gonnella, SRF Group Leader On behalf of the LCLS-II Collaboration

29 August 2022

Stanford University

Outline

LCLS-II Facility Overview, Scope, and Parameters Installation

NC Linac Based Commissioning

Cryogenic Systems & Cool Down

SRF and Cryomodule Commissioning

SC Beam Commissioning

Summary

1

LCLS-II Facility Overview, Scope, and Parameters

- SLAC is developing an upgrade of its Linac Coherent Light Source (LCLS) that will be at the forefront of X-
- LCLS-II will provide a major jump in capability:
 - Increasing from 120 pulses per second to 1 million pulses per second.
 - Enabling researchers to perform experiments in a wide range of fields that are currently impossible.
 - The unique capabilities of LCLS-II will yield a host of discoveries to advance technology, new energy solutions and our quality of life.

LCLS

Experimental Ha

Remove SLAC Linac from Sectors 0-10

New Injector and New Superconducting Linac

New Cryoplant -

Existing Bypass Line

New Transport Line

Two New Undulators And X-Ray Transport Reconfigure Near Experiment Hall

Argonne

LCLS-II

SLAC NATIONAL ACCELERATOR LABORATORY

BERKELEY LAB

Fermilab Jefferson Lab

Linac & FEL Layout

SLAC D. Gonnella, LCLS-II Commissioning

LCLS-II Technical Parameters

Performance Measure	Threshold	Objective				
Variable gap undulators	2 (soft and hard x-ray)	2 (soft and hard x-ray)				
Superconducting linac-based FEL system						
Superconducting linac electron beam energy	3.5 GeV	≥4 GeV				
Electron bunch repetition rate	93 kHz	929 kHz				
Superconducting linac charge per bunch	0.02 nC	0.1 nC				
Photon beam energy range	250–3,800 eV	200–5,000 eV				
High repetition rate capable end stations	≥ 1	≥ 2				
FEL photon quantity (10 ⁻³ BW) per bunch	5x10 ⁸ (10x spontaneous) @2,500 eV	> 10 ¹¹ @ 3,800 eV				
Normal conducting linac-based system						
Normal conducting linac electron beam energy13.6 GeV15 GeV						
Electron bunch repetition rate	120 Hz	120 Hz				
Normal conducting linac charge per bunch	0.1 nC	0.25 nC				
Photon beam energy range	1–15 keV	1–25k eV				
Low repetition rate capable end stations	≥ 2	≥ 3				
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV				

LCLS-II Technical Parameters

Performance Measure		Threshold	Objective			
Variable gr	ap undulators	2 (soft and hard x ray)	2 (soft and hard x ray)			
Superconducting linac-based FEL system						
Superconducting linac	electron beam energy	3.5 GeV	≥ 4 GeV			
Electron bunch repetition rate		93 kHz	929 kHz			
Superconducting linac charge per bunch		0.02 nC	0.1 nC			
Photon beam energy rang	ge	250-3,800 eV	200–5,000 ev			
High repetition rate capable end stations		≥ 1	≥ 2			
FEL photon quantity (10-3 PW/) per hunch		(10)(10) an antan agus) (0) 500 al	> 10 ¹¹ @ 3,800 eV			
Paramet		LCLS-II				
Normal conducting linac	# 1.3 GHz CMs	35	15 GeV			
Electron bunch repetitio	Operating Gradien	nt 16 MV/m	120 Hz			
Normal conducting linac	conducting linac Required Q. at Operating Gradient 2.7x10 ¹⁰					
Photon beam energy rang	je	1-15 KeV	1–25k eV			
Low repetition rate capab	le end stations	≥ 2	≥ 3			
FEL photon quantity (10 ⁻³ BW ^a) per bunch		10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

2

Installation

Electron Gun and NC Beam Line Installation

Parameters	Nominal		
Gun energy (keV)	750		
Gun cathode gradient (MV/m)	19.5		
Cathode QE	> 0.5%		
Laser energy (μJ) on the cathode	0.3 µJ		
Maximum bunch repetition rate (MHz)	0.93		
Nominal bunch charge (pC)	100		
Initial beam current (µA)	30		

Electron Gun and NC Beam Line Installation

- Electron source beamline was built by LBNL (APEX Gun)
- Laser system was manufactured by Amplitude:
 - Oscillator operates at 46.43MHz
 - Modulator selects pulse rate from 0 to 1MHz
 - Conversion from IR to UV is 8-20%
- Commissioned e-source (2018-2020), including several upgrades (e.g. tuners, additional collimators)

CI	
31	

Parameters	Nominal		
Gun energy (keV)	750		
Gun cathode gradient (MV/m)	19.5		
Cathode QE	> 0.5%		
Laser energy (μJ) on the cathode	0.3 µJ		
Maximum bunch repetition rate (MHz)	0.93		
Nominal bunch charge (pC)	100		
Initial beam current (µA)	30		

Cryomodule Installation

Last CM (spare) Delivered in May 2021

Cryomodule Installation

Last CM (spare) Delivered in May 2021

CM Installation Complete February 2021

Undulator Installation

Vertical Variable Gap SXR Undulator

Horizontal Variable Gap HXR Undulator

Delivery of X-Rays to Instruments Began in 2020

3

NC Linac Based Commissioning

Completed Scope – NC Based Commissioning

Electron Gun

- 750 keV Gun and laser system fully commissioned
- Low energy beamline (LEB)
- Loadlock for photocathode swaps

SLAC

Beam Transport

- Linac to Undulators (LTUS, LTUH)
- CLTS (Ops) beamline allowed early commissioning of SXR systems:
 - Beam Transport
 - Undulators and Instruments

Undulators

- HXR Undulator
- SXR Undulator
- HXRSS-II
- SXRSS-II (Ops)

Cu-Linac operation allowed commissioning of warm beamline systems, undulators, and instruments

Early Injector Commissioning Completed in 2018

F. Zhou et al, "First Commissioning of the LCLS-II CW Injector Source," presented at IPAC '19, Melbourne, Australia, May 2019, TUPTS106

Table 1: Major LCLS-II Injector Beam Requirements				
Parameter	Nominal			
Gun energy (keV)	750			
Bunch repetition rate (MHz)	0.93			
Bunch charge (pC)	100			
Peak current (A)	12			
Slice emittance (µm.rad)	0.4			

18

NC Linac Based Undulator Performance

HXR Achieved Photon Number

SXR Achieved Photon Number

Undulator Demagnetization

LCLS-I Undulator K Change vs Dose

- Degradation of undulator magnetization from radiation dose is a concern for LCLS-II operation
- Primary source of radiation dose is background radiation
 - Beam steering errors do not contribute significantly due to MPS
- Rough measurement of demagnetization per radiation does completed for LCLS-I
- Expected to require undulator swaps for long term beam operation for LCLS-II
- Direct measurements of radiation does (RADFETs) planned for LCLS-II

In-Situ Undulator Radiation Damage Measurement

Developing system to measure the change in magnetization of an undulator *in situ*

Currently being tested in SXR

4

Cryogenic Systems & Cool Down

Cryoplant Commissioning Process

Cool Down & Pump Down to 2 K

- Cool down of the entire linac was completed in ~5 days!
- A rate of 2-3 K/hour was maintained over that duration
- Cool down was **near-fully automated** by the cryogenic controls system
- After multiple attempts, stable operation at 2 K was achieved **only 11 days later**

Cool Down & Pump Down to 2 K

- Cool down of the entire linac was completed in ~5 days!
- A rate of 2-3 K/hour was maintained over that duration
- Cool down was **near-fully automated** by the cryogenic controls system
- After multiple attempts, stable operation at 2 K was achieved **only 11 days later**

5

SRF and Cryomodule Commissioning

Overall SRF Commissioning Status

- Cryomodule commissioning has been very successful
- 97% of installed cavities fully operational (planned 94%)
- Majority of testing included an admin limit of 18 MV/m
- Total commissioned voltage
 exceeds design by >20%

Overall SRF Commissioning Status

- Cryomodule commissioning has been very successful
- 97% of installed cavities fully operational (planned 94%)
- Majority of testing included an admin limit of 18 MV/m
- Total commissioned voltage
 exceeds design by >20%

Total Commissioned Cavity Voltage: 4.9 GV

Gradient Performance

Comparison with Acceptance Test

- Gradient performance is in line with CM acceptance test • measurements at FNAL and Jlab
- No observable change in field emission onsets or magnitude from installation
- Multipacting processing resulted in ~3 MV/m gain in stable gradient

Admin limits:

- 18 MV/m in commissioning
- 21 MV/m in acceptance \bullet

D. Gonnella, LCLS-II Commissioning

Gradient Performance

Admin limits:

- 18 MV/m in commissioning
- 21 MV/m in acceptance \bullet

D. Gonnella, LCLS-II Commissioning

- Gradient performance is in line with CM acceptance test • measurements at FNAL and Jlab
- No observable change in field emission onsets or magnitude from installation
- Multipacting processing resulted in ~3 MV/m gain in stable gradient

Gradient Performance

Comparison with Acceptance Test

- Gradient performance is in line with CM acceptance test measurements at FNAL and Jlab
- No observable change in field emission onsets or magnitude from installation
- Multipacting processing resulted in ~3 MV/m gain in stable gradient

Admin limits:

- 18 MV/m in commissioning
- 21 MV/m in acceptance

D. Gonnella, LCLS-II Commissioning

Multipacting Processing

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the band of 17-23 MV/m
- Processing techniques developed and tested by LCLS-II-HE team and applied to a subset of cavities in the installed linac
 - Consists of repeatedly quenching the cavity in CW mode with limited time (few seconds) for recovery

Average gradient gain of ~3 MV/m observed in 37 cavities processed

6

SC Beam Commissioning

100 MeV Injector Commissioning Nearing Completion

Establish beam and optimize to design specifications (emittance, charge, transmission)

- Conduct beam containment system (BCS) certification
 - > Calibration of Beam Safety System devices at high repetition rate and bunch charge
 - Beam current and beam loss monitors

100 MeV Injector Performance

Excellent Injector emittance: 0.6x0.8 μm

Task	September	October		November		December		January	
Downtimes									
LINAC Commissioning									
Beam Transport									
Undulator Commissioning									
Accelerator Restart								1	

1st Light Milestone is anticipated in January of 2023

\rightarrow Achievement of Threshold KPPs \leftarrow

 \rightarrow Ready to begin routine delivery of x-rays to the instruments \leftarrow

Ramp- Up Plan for 500 kHz FEL Operation

- Conservative and slow beam power ramp-up to full performance ensures safe beam operation
- Objective KPPs will be reached after ~2 years following gun restart (March/April 2024)

- LCLS-II commissioning is progressing well
- Undulator and beamline systems were commissioned with the copper linac
- Cool down of the superconducting linac went very smoothly and was complete in May 2022
- Injector and 100 MeV commissioning has produced a beam of excellent quality
- Cryomodule performance has been excellent, showing no degradation to cavity performance from installation at SLAC
- The next few months will be very exciting!

Special thanks to the entire LCLS-II collaboration for all their hard work to make this possible!

Thanks for your attention!

Fermilab

