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Abstract Accelerating Structure of Independently Phased Cavities

Linear accelerators containing the sequence of independently phase

cavities with constant geometrical velocity along each cavity are Up-1 cos(wt+pp_7) Up cos(wt+¢pp) Un+1 cos(wt+pp, 1)
widely used in practice. The chain of cavities with identical cell length a a
is utilized within a certain beam velocity range, with subsequent ! n-1 ' :4-—"»:
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and analysis of beam dynamics in this type of accelerators are usually i n-1 . : n+1

provide an analytical treatment of beam dynamics in such linacs
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performed using numerical simulations. In the present paper, we ! 2! !! !! 2!,!_’ ! !! !! !! —> 1 —>
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based on Hamiltonian formalism. We begin our analysis with an h
examination of beam dynamics in an equivalent traveling wave of a H
single cavity, propagating within accelerating section with constant 14
phase velocity. We then consider beam dynamics in arrays of cavities, '
utilizing an effective traveling wave propagating along with the whole
accelerator with the velocity of synchronous (reference) particle. The  Accelerating structure of independently phased cavities: L, is the cavity length, d, is the distance between
analysis concluded with the determination of the matched beam
conditions. Finally, we present a beam dynamics study in 805 MHz
Coupled Cavity Linac of the LANSCE accelerator facility. of cavity, f§
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cavities, 3(. is the distance between centers of last and first cells of adjacent cavities, 3, is the geometrical velocity

is the velocity of reference particle, U, is the cavity voltage, and ¢, is the cavity RF phase.

Dynamics in a Single Cavity Dynamics in Array of Cavities

Set of equations for particle dynamics in
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eam Dynamics in LANSCE 805 MHz Coupled Cavity Linac
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Elliptical approximation of separatrix and normalized

longitudinal emittance of the matched beam. MHz linac: (a) matched beam, (b) mismatched beam.



