

STATUS AND ISSUES (MICROPHONICS, LFD, MPS) WITH TRIUMF ARIEL E-LINAC COMMISSIONING Shane Koscielniak , 2018 September 18

18/09/2018

LINAC'18 Sept 16-21 2018

Discovery, accelerated

∂TRIUMF

Contents

- Introduction
- Optics Commissioning
- Machine Protection System
- RF stability introduction
 - 4K/2K insert; vector sum control
- Microphonics
- Ponderomotive Instability
- Conclusion
- LN2 disturbances

∂TRIUMF

E-linac will provide high peak & average power electron beam for Rare Isotope Beam production via photo-fission from actinide targets

2017 status:

- Injector Cryomodule EINJ gradient limited to 7 MV/m by field emission.
- EINJ & EMBT commissioning compromised by beam energy instability ~ 0.5%
- EACA:CAV1 gradient limited to 5MV/m returned to ISAC for repair
- Accelerator Cryomodule EACA:CAV2 gradient achieved 10 MV/m.

2018 Objectives:

- Improve RF stability
- Beam Energy > 25 MeV
- Commission Beam Optics (bends & quads) to EHDT dump
- Commission Machine Protection System (MPS) to EHAT
 - E-linac parameters 10 mA (c.w.) at 30 MeV \rightarrow 300 kW beam power
 - Mutual agreement with regulatory authority not to operate > 100 W until MPS is fully functional

E-hall 10kW beam tuning dump (EHD)

Discovery, accelerated

TRIUMF E-linac Beamlines Commissioning: Transport from EGUN to EINJ to EMBD

2019 May 18: For the first time, we have a stable accelerated beam at E-linac Medium Energy Beam Dump (EMBD). Energy ≈ 9 MeV. No discernible transverse or longitudinal halo.

- Measured 2*r.m.s beam sizes (square dots) compared with calculated beam envelope (solid lines). Measurements were taken using fluorescent screens. Error bars reflect the sensitivity of the r.m.s. calculation to the background cut threshold.
- Quadrupole settings within 0.5% of calculated values
- Beam envelope is calculated using TRANSOPTR, starting practically from rest (20 eV).

18/09/2018

Transport from EGUN to EHDT dump

E-linac Beamlines Commissioning

- Beam image on a fluorescent screen at 300 keV (left) after the ELBT last solenoid, and at 22 MeV (right) before the EHDT dump. In both cases, the phase advance from the cathode to screen is close to a multiple of π in both planes, causing the formation of an image.
- Note the low aberration transport between object and image.

Discovery, accelerated

5

18/09/2018

E-linac Machine Protection System (MPS)

Layered:

- Equipment interlocks
- Beam Modes (permitted combinations of beam properties & beam path)
 - Prescribes beam power limits according to beam terminus (dump rating) and presence/absence of intercepting beam diagnostics
 - Reduce human error
- Beam Position Monitors (BPMs)
 - Anticipatory/Predictive
 - Trip on beam position exceeds specified limits
 - Piggy back on existing BPM system; optical fibre links to FSD
 - Rolled out from EMBT to EHDT in 2018
- Beam Loss Monitors (BLMs)
 - Last resort
 - Trip on beam loss exceeds specified limits
- Fast Shutdown (FSD)
 - Receives all trip requests/signals
 - Remove RF from EGUN (gridded thermionic gun) \rightarrow electron beam OFF

Discovery,

6

LINAC'18 Sept 16-21 2018

TRIUMF MPS Beam Loss Monitors System Specification

- Trip rapidity < 10 μ s</p>
 - Respond to catastrophic beam loss
- Dynamic range > 10⁵
 - Respond to fast and slow loss. Monitor chronic loss
- Trip on integrated 100 nC beam loss during 100 ms sliding window
 - 10 mA × 10μs = 100 nC
 - 1 μA × 100 ms = 100 nC
- Post mortem capability
 - Synchronously freeze all buffers on 1st trip
 - Deep memory ~ 1 second for every loss monitor
 - Easily calibrate and set thresholds for individual beam loss monitors
 - External trigger for testing
- BLMs (ionizing radiation detectors)
 - Full and redundant geographic coverage; Two types
 - Long Ionization Chambers (LICs) ~ 1 metre Heliax; Argon filled for rapidity
 - Scintillators = BGO crystal & photomultiplier tube (small)

Time from Fast Shut Down trip (yellow) to beam off (blue) ~ 11.0+/- 0.5 μ s

MPS BLM electronics & firmware ready for 2018 May beam start

Discover

LINAC'18 Sept 16-21 2018

%TRIUMF MPS BLM system Status & Progress

- 2016: ELBT/D MPS (300 keV) commissioned
- 2017: more versatile electronics board (TBLM) developed
- 2018: EMBT/D MPS (10 MeV) commissioned
- 2018: EABT/D & EHAT BLMs deployed; commissioning started
 - BLM number and type not finalized, likely to be 6 LICs $\& \ge 2$ PMTs
- EMBT/D: Three LICs are positioned to include redundancy in most areas of the beamline
- **One PMT is placed at the dipole magnet** leading to EMBD to detect spills inside the magnet.
- Commissioning consisted of performing beam spills to determine optimal numbers of BLMs and location
- Full spills were performed at low duty factors using quadrupoles and steerers to mimic point losses in H & V planes of the beamline.
- Final step: purposeful beam spills above threshold to ensure a trip takes place within the specifications.

Note, dark currents from EINJ & EACA at 5 & 3 MeV, & few keV have been found to cause false trips.

LINAC'18 Sept 16-21 2018

TRIUMF E-LINAC RF Spectra & Time Domain: 2018 June 19-21

EGUN: beam signal: 60 Hz sidebands Other sidebands at 180, 300, 420 Hz

EINJ cavity pickup: 40Hz main sidebands Other sidebands: 120, 300 Hz, etc Spontaneous Amplitude Modulation of the two EACA cavities in anti-phase, above a 12 MV/m (total gradient) threshold.

These 3 measurements launched a variety of investigations:

- Microphonics: cavity mechanical modes, acoustic/vibrational noise sources, other disturbances (LN2 supply, switch-mode HVPS)
- Ponderomotive Effects: Static Lorentz Force Detuning, Dynamic LFD, Simulations, Routh-Hurwitz analysis, Experimentation.

9

18/09/2018

TRIUMF E-linac RF Regulation and Stability

TAKE HOME Message: After two months of investigations, We can make almost a one-to-one correspondence between source, frequency, location, and effect of microphonic noise below the ponderomotive threshold.

The main tools have been RF phase noise spectra and acoustic vibration spectra Turn on/off and throttle equipment to eliminate/discriminate sources

However, behavior above ponderomotive threshold still under investigation.

But first, I have to tell you about a couple of e-linac cryomodule/RF peculiarities.

Discovery, accelerated

10

18/09/2018

∂ TRIUMF 2 Kelvin LHe is made on-board with a Joule-Thomson expansion valve and 4K phase separator, 4K/2K HX, etc.

LINAC'18 Sept 16-21 2018

CREWING Accelerator Cryomodule has vector-sum control of two cavities driven from a single 250 kW CW klystron

LINAC'18 Sept 16-21 2018

Switch-mode DC High-Voltage Power Supply

Klystron cooling pumps are in vault with e-linac Discovery, accelerated

TRIUMF EGUN Vibrational "noise" as measured by an accelerometer

- Most peaks are 60 Hz (&30 Hz) harmonics from raw water pumps and booster pumps.
- E-gun impedance tuner (because of long lever arm) is about 10 times more noisy than massive SF6 tank

- 650 MHz Master Oscillator: clean as a whistle
- EGUN amp: +/- 60 Hz sidebands down to -55 dB
- EGUN beam signal: +/- 60 Hz sidebands down to -40 dB (1%*). Additional lines at 180, 300, 420 Hz
- But beam energy measurements show dp/p $\sim 10^{-4}$, so it is phase error

*if it is an amplitude error

Discovery, accelerated E.g. 5×10^{-5} G/V @ 30 Hz \rightarrow 0.54 µm @ 30 Hz Moving impedance tuner \rightarrow 0.2 deg phase jitter; carrier is 650 MHz

18/09/2018

LINAC'18 Sept 16-21 2018

TRIUMF Injector Cryomodule RF Spectra 2018-06-21

- 1.30 GHz Master Oscillator: clean as a whistle 67 dB (0.04%)
- Signal from RF buncher: very clean down to -65 dB (0.05%)
- Signal from EINJ: +/- 40 Hz sidebands down to -40 dB (1.0%*)
- Other sidebands: 120, 300 Hz, etc
- * if it is an amplitude error

Hypothesis: components in 4K/2K insert (e.g. JT valve) behaves like blown pipe (gas/liquid mixture)

18/09/2018

Discovery, accelerated

∂TRIUMF

EINJ cavity pick-up results 2018-07-24: phase analyzer on loan from Rhode & Schwarz

LINAC'18 Sept 16-21 2018

15

acceleraté Discovery

%TRIUMF

RF Cavity Calculated Mechanical Modes

Fundamental (Hz)	36.5	37.3
1 st harmonic (Hz)	125	134
2 nd harmonic (Hz)	226	245
3 rd harmonic (Hz)	349	363

Also longitudinal mechanical modes

Fundamental

Discovery, accelerated

TRIUMF EINJ phase stability measurements 2018-07-10

- Cavity pickup signal (measured with spectrum analyzer) and phase-loop-error signal (measured with dynamic analyzer) are consistent
- All show similar disturbances at 40-50, 60, 90, 120, 180, 275, 300, 360 Hz
 - 40 Hz & 300 Hz disturbances particularly strong
- These disturbances coincide with frequencies in the cooling water acoustic spectra
- And fall within the bandwidth of several of the calculated cavity mechanical oscillation modes

Fundamental (Hz)	36.5	37.3
1 st harmonic (Hz)	125	134
2 nd harmonic (Hz)	226	245
3 rd harmonic (Hz)	349	363

Transverse modes are split by the RF input coupler loads

- It is unfortunate that several mechanical modes lie close to multiples of 60 Hz: (37), 126, (178), 245, 363 <=> 60, 120, 180, 240, 360.
- Some of the calculated modes have been verified in shaker measurements: deliberate excitation with an acoustic oscillator.

19

Discovery, accelerated

_						Strength	AC	
	lysis of FIN. I pha	Se Rhode &	Frequency	BW	Q	Order	harmonic	
		Schwarz	2.086215	0.0575	36.282	19		
Hutblew Phase Noise v Bigs of Frequency 1.0002000 fbs 10000 564 <td>"noise" speci</td> <td>ra Strength</td> <td>6.258862</td> <td>0.057</td> <td>109.8046</td> <td>23</td> <td></td>	"noise" speci	ra Strength	6.258862	0.057	109.8046	23		
Index Spectrum • (Chr P1 stm) 16 Sput 68 • Chr P1 • (Chr A1 SCORD 84 Trace1 -		Ordor	10.5786	0.2194	48.21603	14		
		Order	13.06756	0.2328	56.13212	9		
12 8/00			17.16979	0.7925	21.66535	17		
- 32 00-014			20.35614	0.2015	101.023	7		
1.0 Hz 10 Hz		Machanical	29.59192	0.2191	135.0612	10		
1 2 27 2000 Fe 4,000 Fe 4 34.25 dec 2.22 4768 A mmd 1.55 Fe 4 4 4 24 16 6 5 2 27 2000 Fe 4 34.000 Fe 4 34.000 Fe 4 34.000 Fe 5 751.01 0714.00 mmd 1.55 Fe 5 4 4 24 16 16 5 2 2 2 2000 Fe 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Wechanical	40.69847	0.5927	68.66623	1		
9 2 0.000 Feb -0.5123 687 1107.02 768 120 762 762 <th 7<="" td=""><td></td><td>fundamental</td><td>46.07744</td><td>1.2617</td><td>36.52012</td><td>5</td><td></td></th>	<td></td> <td>fundamental</td> <td>46.07744</td> <td>1.2617</td> <td>36.52012</td> <td>5</td> <td></td>		fundamental	46.07744	1.2617	36.52012	5	
00:11:26 24.07.2018			60.01178	0.7		3	1	
Phase noise			88.74512	0.5552	159.8435	8		
0 100 200 300 400 500 60 -50	0 700 800 900 1000	Mechanical	124.6643	2.322	53.68834	2		
In the second	s series of lines comes	1 st harmonic	137.8433	3.813	36.15087	6		
	n the switch mode	_	157.2808	3.1911	49.28734	12		
Am	Pedon DC HVPS		180.0612	1.8939	00.004.40	13	3	
-70			199.313	2.4667	80.80149	18	4	
	nsequential	Water	240.0322	2.2119	102 4472	15	4	
			277.4457	2.082	103.4473	11	-	
		cooling	300.0875	1.242		4 20	С	
-90 -90 -90 -90 -90 -90 -90 -90 -90 -90		spectrum	420,0066	5.7778		20	7	
			420.0900	5.0557		25	/	
			540 5819	6 5857		25	٥ ۵	
	ment har man		600 13/19	6 1022		20	10	
-110		Klustan	655 8779	6 8381	95 91522	22	10	
r requency(riz)	v1 cavity define 6.1kw output nower	Klystron	720 1504	5 767	55.51522	21	12	
		DC HVPS	748 5502	6 2745	119 3004	27	12	
Separate measurement:		spectrum	780.1735	5.8915	110.0004	29	13	
EINJ cavity detuned, genera	tor driven		840.1926	7.2086		31	14	
18/00/2018	LINA	AC'18 Sept 16-21 2018	900.1993	6.4469		30	15	
10/03/2010		'	974.6442	8.0471	121.1174	28		

Discovery, accelerated

TRIUMF Ponderomotive Instability in EACA limits gradient; two cavities with vector sum feedback

Pickup 1 and 2 signals; counter phase amplitude oscillations at 160 Hz

RF spectrum from 1st pick up shows 160Hz sidebands (same for 2nd cavity)

EACA presently operated under (almost) full reflection

- Few Watts beam power
- 100 kW forward RF power
- Very far from RF design parameters
- Power Divider does not sufficiently isolate one cavity from reverse power of the other
- Controls cross-talk & un-intended feedback

Properties of the instability include the following:

- Thresholding
- Modulation of cavity amplitudes in-antiphase
- Frequency around 160 Hz, but varies with parameters
- Slow growth: over minutes at 12 MeV, secs at 17 MeV
- Final amplitude limited by klystron forward power
- Growth rate rises with accelerating gradient
- Sensitive to individual cavity detunings.
- In-phase AM if the cavities are grossly mis-phased.

iscovery

21

accelerate

LINAC'18 Sept 16-21 2018

TRIUMF EACA 2nd Cavity Dynamic Lorentz Force Detuning

Make amplitude modulation at definite frequency. Infer depth of detuning from synchronous phase oscillation

frequency (Hz)	Noise (dBc) without modulation	Bandwidth (Hz)	Modulation coefficient (Hz/mVpp)*
120.0		0.8869	0.0407
35.3	-44.49	0.3765	0.0405
19.3	-47.89	0.1914	0.0182
60.0	-40.26	0.3003	0.0708
21.1	-42.16	0.2	0.0192
300.1	-49.55	0.6022	0.0358
180.1	-54.21	0.9692	0.0208
49.9		0.4	0.055
29.6	-47.24	0.5	0.0279
47.9	-44.86	0.3	0.0508

- Deliberate AM excitation at 120 Hz.
- Response is detuning depth.
- Repeat at various modulation frequencies of significance (Rhode & Schwarz strength ordering)

Modulation depth = 5.25% of gradient

LINAC'18 Sept 16-21 2018

Discovery, accelerated

∂TRIUMF

Way Forward – microphonics

- Vibration damping water pumps & pipes, waveguides, flex vacuum lines, etc.
- Investigate 4K/2K cryo insert

Way Forward - ponderomotive

- Improved diagnostics, increase EPICS data rates from 10's to 100's Hz
- Conceivable that problem resolves itself operate closer to zero reflected power
- Dynamic LFD measurements below threshold for dual cavity operation should help us understand the ponderomotive instability.
- Single cavity (1 alone) not likely to give us insight.
- However, they do provide quantitative parameter inputs for simulations

Acknowledgement

Majority of RF measurements made by Yanyun Ma (TRIUMF) See TUPO020

Discovery, accelerated

23

18/09/2018

%TRIUMF Computer Simulations of Ponderomotive Instability with Vector Sum Control (Zhongyuan Yao)

TRIUMF Looking for a threshold. Operating area (in detuning space) shrinks to zero as the gradient is increased. Eacc 10. MV/m

TRIUMF High lights of the 2018 E-linac commissioning include:

- Stable operation of EGUN and entire cryogenic system for several months
- Beamline equipment and EPICS controls well behaved and supportive of rapid advancement from EINJ to EHDT beam dump
- EINJ operation with relative stability of 0.1%
- No discernible transverse or longitudinal halo in EMBT
- EMBT/D beamline equipment commissioned
- EMBD/T MPS commissioned
- 2-cavity operation of EACA
- 25.2 MeV beam at EABD momentum analysis station
- EHAT beamline equipment commissioned
- EHDT beam dump functional and interlocks in place
- Electron beam threaded to EHDT dump
- Introduced concept of controls "Optics Lock" to facilitate transition from tuning to commissioning
- Confirmation of EINJ entrance mis-steering
- Identification of microphonic noise sources in e-hall
- Identification of LN2 disturbances to EACA & EINJ
- Discovery of ponderomotive instability in EACA SRF

TRIUMF EACA Liquid Nitrogen Supply Valve and Beam Stability

- Long term disturbances do not appear in the noise spectra – because these data are acquired over relatively short time scales.
- As it transpires, long-term quasiperiodic disturbances can be even more serious to RF regulation than the microphonics.

Xavg: 1mm means 0.133% Hence LN2 valve bursts can change beam energy by few 0.1%

Discovery, accelerated

18/09/2018

≈TRIUMF E-linac LN2 Supply Valve & Beam Stability

We decreased LN exhaust temperature from 130 to 120K. The reverse power becomes more stable than before. But running cooler also means a deeper LN2 filling cycle. So this is a "teaser" rather than a "cure".

Note, there may be some correlation of the ponderomotive instability parameters with the LN2 disturbances 28

18/09/2018

TRIUMF EACA 1st cavity static Lorentz Force Detuning vs different tuner positions – 2018-08-28

This is with tuner stressed. When tuner is released, value becomes ~ -2.59 Hz/(MV/m)²

LINAC'18 Sept 16-21 2018

18/09/2018

Discovery, accelerated