RF Design of a High-Frequency RFQ Linac for PIXE Analysis

H. W. Pommerenke1,2, A. Bilton1, A. Grudiev1, A. M. Lombardi1, S. Mathot1, E. Montesinos1, M. Timmins1, M. Vretenar1, U. van Rienen2
The PIXE RFQ

PIXE = particle/proton-induced X-ray emission
- low energy ion beam excites X-ray in specimen atoms
- spectrum allows for non-destructive analysis of artefacts, cultural heritage (among others)

PIXE RFQ
- 750 MHz RFQ provides 2 MeV protons over only one meter
- goal: first transportable system for *in situ* ion beam analysis

![RFQ Diagram](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input energy</td>
<td>20 keV</td>
</tr>
<tr>
<td>Output energy</td>
<td>2 MeV</td>
</tr>
<tr>
<td>RF frequency</td>
<td>749.48 MHz</td>
</tr>
<tr>
<td>RFQ length</td>
<td>1072.938 mm</td>
</tr>
<tr>
<td>Vane voltage</td>
<td>35 kV</td>
</tr>
<tr>
<td>Min. aperture</td>
<td>0.7 mm</td>
</tr>
</tbody>
</table>
RF Design

- optimisation for 749.48 MHz and maximum Q factor
- end plates with bead pull holes and dipole stabilisation rods

- maximum surface electric field: 39.1 MV/m at module gap

- 16 copper slug tuners with conical tip
- 7 vacuum ports with crossbar
RF Design

- power loss can be calculated from decomposition into segments

\[P_0 = \frac{\omega_0 V^2}{2} \sum_s \frac{1}{Q_{0,s}} \int_{\text{Seg. } s} C'(z) dz \]

without simulating full model

- one input power coupler (coaxial magnetic loop antenna) mounted on rotatable flange

<table>
<thead>
<tr>
<th>Loss factor</th>
<th>6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitance</td>
<td>125 pF/m</td>
</tr>
<tr>
<td>Stored energy</td>
<td>82 mJ</td>
</tr>
<tr>
<td>RF power loss</td>
<td>64.5 kW</td>
</tr>
<tr>
<td>Max. surface field</td>
<td>39.1 MV/m</td>
</tr>
</tbody>
</table>
Thermal Simulation

- RF power loss raises RFQ temperature, thermal expansion results in deformation and frequency shift
- study frequency shift in dependence of duty cycle and water cooling properties
1D Particle Tracking

- validate RF design by tracking particles through RF field
- so far: longitudinal tracking only
 - 0..2π start phases
 - 20 keV → 2 MeV
 - \(x = y = 0 \)

- Frequency shift due to RF heating acceptable for transmission
Conclusion

- RF design done for cavity, tuners, pumping ports, power coupler
- Thermal simulation conducted to obtain requirements on cooling circuit
- First tracking results: deformation due to RF heating acceptable
- Current state: machining, first brazing expected Oct 2018
Thank you!

www.cern.ch

This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research (grant no. 05E12CHA)

