NITROGEN INFUSION R&DFORCEW OPERATION AT DESY

Marc Wenskat on behalf of the SRF team at DESY LINAC 2018, Beijing – 20.9.2018

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Motivation

Motivation

Benefits of Continuous Wave (CW) operation

•Flexible beam patterns for detectors

Almost any macro pulse structure can be offered

•Slower repetition rate lasers

•Fill-transients no longer an issue

Benefits of Long Pulse (LP) operation

Still high duty factor (DF = 10-50%)Higher gradients than CW with same heat load

- Larger cooling capab
- CW cavities

CW cavities

2 – Install CW capable RF sources

• 1x IOT per RF station

3 – Double the cryo plant (cost driver)

• 2.5 → 5kW

- 3 Double the cryo plant (cost driver)
 - 2.5 → 5kW

4 – Install CW capable gun:

• RF gun upgrade

• RF gun upgrade

New surface preparations

Modifications of the European XFEL surface preparation process

- The proven European XFEL surface treatment (**final EP**) resulted in
 - Average usable gradient: 29 MV/m
 - Average low field quality factor: 2.1.10¹⁰
 - Average Q-value at 23.6 MV/m: 1.3·10¹⁰ (Spec: > 1.0·10¹⁰)
- cw operation requires highest possible Q-values
 => LCLSII Spec: > 2.5.10¹⁰ @ 16MV/m

•"Nitrogen doping":

Novel surface treatments applying a **partial pressure of nitrogen during heat treatment** (developed at Fermilab) result in higher Qvalues

"Nitrogen doping" industrialized for LCLSII cavity production
 => high Q-values, but limited at medium gradients

New surface preparations

Nitrogen Treatment: doping vs. infusion

- "Nitrogen infusion" still in R&D phase ٠
- Allows higher Q-values and higher gradient ٠

Page 16

Temperature [°C]

Time [h]

Time [h]

Problem: No one cooks like Grandma

DESY. | Nitrogen Infusion R&D for CW Operation at DESY | Marc Wenskat | 20.9.2018 | LINAC 2018, Beijing

Second Infusion Run

w/o Nitrogen – just temperature cycle

DESY. | Nitrogen Infusion R&D for CW Operation at DESY | Marc Wenskat | 20.9.2018 | LINAC 2018, Beijing

Third & Fourth Infusion Run

w/o Nitrogen – just temperature cycle

RGA during 800°C bake showed high mass contributions (Hydrocarbons)

RGA during 800°C bake showed high mass contributions (Hydrocarbons)

Samples within a standard 800°C bake showed precipitates as well

Fifth Infusion Run

w/o Nitrogen - just temperature cycle

DESY. | Nitrogen Infusion R&D for CW Operation at DESY | Marc Wenskat | 20.9.2018 | LINAC 2018, Beijing

Page 30

moved on to another?

Sixth and Seventh Infusion Run

With Nitrogen!

TOF-SIMS Analysis

Treated vs. Reference and "Inner vs. Outside Atmosphere"

TOF-SIMS Analysis

Treated vs. Reference and "Inner vs. Outside Atmosphere"

TOF-SIMS Analysis

Treated vs. Reference and "Inner vs. Outside Atmosphere"

Sample Surface = Cavity Surface?

Origin of deterioration?

DESY. | Nitrogen Infusion R&D for CW Operation at DESY | Marc Wenskat | 20.9.2018 | LINAC 2018, Beijing

One more puzzle...

In-situ sample R&D

- UHV-mobile chamber with in-situ surface characterization
- Two samples, both single crystals [100]:
 - Purified by degassing at 2000°C in UHV
 - "Cavity grade" material from large grain disc
- Both baked at 800°C in UHV for 2h & 120°C for 48h with 0.03 mbar N₂

One more puzzle...

In-situ sample R&D

- UHV-mobile chamber with in-situ surface characterization
- Two samples, both single crystals [100]:
 - Purified by degassing at 2000°C in UHV
 - "Cavity grade" material from large grain disc
- Both baked at 800°C in UHV for 2h & 120°C for 48h with 0.03 mbar N₂
- Cavity grade material showed precipitates purified sample did not!
 - SEM

One more puzzle...

In-situ sample R&D

- UHV-mobile chamber with in-situ surface characterization
- Two samples, both single crystals [100]:
 - Purified by degassing at 2000°C in UHV
 - "Cavity grade" material from large grain disc
- Both baked at 800°C in UHV for 2h & 120°C for 48h with 0.03 mbar N_2
- Cavity grade material showed precipitates purified sample did not!
 - SEM
 - XPS confirmed Nb-C phase, no Nb-N

DESY. | Nitrogen Infusion R&D for CW Operation at DESY | Marc Wenskat | 20.9.2018 | LINAC 2018, Beijing

Page 38

Conclusions

- "Atmosphere" inside cavity and niobium box different than furnace no data!
- Need of caps will be investigated
- New set of caps with defined "leak" will be fabricated
- Lack of nitrogen in samples is puzzling
- Origin of Nb-C precipitates
- And relation to rf performance not obvious

