Laser-generated Terahertz Acceleration

S.P Jamison

Department of Physics, Lancaster University, U.K. & Cockcroft Institute for Accelerator Science, Daresbury, U.K.

Dielectric & Structure THz acceleration

Mediating gap between RF and Dielectric Laser Acceleration

- wakefields
- Millimetre scale wakefields
- Broadband pulses controlling dispersion
 group velocity walk off

- Oscillation period femtosecond regime
- Oscillation period *too short*,
 accelerating bucket << injection capability
- Small apertures: wakefields; beam transport; manufacture

THz generation by Optical Rectification

Difference frequency mixing by broadband ultra-short optical pulse

THz acceleration, bunching & streaking

Growing interest, activity and demonstrations

THz acceleration & deflection @ Cockcroft Institute

THz driven injector

• 100keV DC photo-gun and THz-driven structures for acceleration & deflection

THz driven acceleration & deflection of relativistic beams

• 50MeV electron beam of CLARA as testbed

THz source development

Single-cycle pulses

- highest field strengths,
- group & phase velocity matching limits

Narrow-band pulses

- Bandwidth and frequency tuneable sources being developed through chirped-pulse beating
- 5cycle 20-cycles

Polarisation states and transverse profile (mode coupling)

- · Require longitudinal field for acceleration
- Transverse polarisation profile matching for mode-selection

S Jamison Linac'18, Beijing, September 2018

THz driven structures

Velocity matching design

- · Matching phase velocity to electron
- group & phase velocity matching limitations; dispersion and group walkoff

THz travelling source concept

• Dispersion-free propagation of single-cycle pulses

Dielectric-lined waveguides for velocity matching

Dielectric-lined waveguide Manufacture

- Rectangular-shaped Dielectric-Lined Waveguide (DLW).
- Hollow copper structure lined with fused silica, 200 μm wide aperture.
- Tapered horn used to couple THz radiation into the waveguide.
- Designed to either deflect or accelerate 100 keV electrons.

Dimension	Size (µm)
Waveguide width, w	1000
Dielectric slab separation, 2a	200
Dielectric slab thickness, t	242
Waveguide length, L	10000
Coupler length	44000

Dielectric-lined waveguide Coupling

THz Electro-optic Time-Domain Network Analyser

THz electro-optic time-domain Network Analyser

Laser-driven THz sources for acceleration

Photoconductive antenna

Laser-driven THz sources for acceleration Non-linear Optical Materials

Paired non-linear polarisation/source for opposite polarity THz fields

Laser-driven THz sources for acceleration

High-field Cherenkov Non-linear Optical Materials

1 MV/m longitudinal fields with modest <1mJ laser energy now have 200mJ laser available

THz Generation – spintronic emitters

Ferromagnetic layer: CoFeB Non-ferromagnetic: Pt Substrate: MgO

[5] T. Seifert, Nature Photonics, **10**, pages 483–488 (2016)

Reported <u>transverse</u> THz electric field of **300 kVcm⁻¹** for large-area spintronic source

T. Seifert *et al., Appl. Phys. Lett.* **110**, 252402 (2017)

- Polarization dependence
 - Terahertz polarization is perpendicular to the applied magnetic field

- Magnetic-field patterning
 - The magnetic structure of the source can be manipulated to alter the emitted terahertz polarization

Spintronic source

Transverse polarization

Spintronic source Longitudinal polarization Amplitude (arb. units) 500 1000 1500 2000 4 6 0 **Aligned magnetic polarity** (a) (b)

E_{THz} (kVcm⁻¹) -2 0 2

-6 -4

Travelling-source THz-driven acceleration

Dispersion-free, sub-luminal, propagation of single-cycle pulses

High field strength THz because they are single-cycle. How to propagate without dispersion?

Intrinsically broadband - waveguide propagation can not maintain field strength Single-cycle - transverse pumping & π -phase jump structure not applicable

Travelling-source THz-driven acceleration

Travelling-source THz-driven acceleration

خ>

Cockcroft Institute

Travelling source THz-driven acceleration

Measuring the Travelling-source in the near-field

- Dispersion free propagation, at tuneable velocity
- Subluminal propagation with $v_{\phi} = v_g < c$

Travelling source THz-driven acceleration

High-field Cherenkov non-linear rectification sources

Normal Cherenkov source Pulse-front tilt to match Cherenkov angle

THz deflection of 100keV electrons

Travelling source experiment

THz acceleration of 30 MeV electrons

CLARA test accelerator, STFC Daresbury Laboratory

THz acceleration experiments in late stages of preparation beam-time October-November 2018

Phase-I electron beam: 40MeV, <200fs rms

In summary

- THz driven acceleration and deflection demonstrations coming on-line
 - Streaking and acceleration of sub-relativistic beams (<100keV) demonstrated
 - Streaking of relativistic beams demonstrated
 - Experiments for relativistic beam acceleration in preparation for CLARA
- THz sources developed
 - Longitudinal polarisation and transverse mode control
 - Broadband, singe-cycle sources & narrow-band sources available
- Structures and novel sources for THz-particle velocity matching

THz acceleration Group Cockcroft Institute

Acknowledgments

Steven Jamison Graeme Burt Alisa Healy Oliver Findlay

> Science & Technology David Walsh Facilities Council

Ed Snedden

Shyamal Mondal

MANCHESTER

Darren Graham Rob Appleby Dan Lake Elliot Smith Vasilis Georgiadis Morgan Hibberd

...with some missing

