

First Ever Ionization Cooling Demonstration in MICE

Paul Soler (U.Glasgow), <u>Jingyu Tang</u> (IHEP) on behalf of the MICE Collaboration

> LINAC 2018 Beijing, Sep. 16-21, 2018

Outline

- From Neutrino Factory to Muon Collider
- Introduction to MICE experiment
- Emittance cooling demonstration at MICE
- Conclusions

Neutrino Factory

□ International Design Study for a Neutrino Factory (IDS-NF):

- Most sensitive facility for the study of CP violation in neutrinos

From Neutrino Factory to Muon Collider

 Staging of Neutrino Factory, leading to a Muon Collider, carried out within the US Muon Accelerator Programme (MAP)

Only high energy lepton collider that can reach 10 TeV and beyond

Muon Cooling

Muon Ionization Cooling:

 Muon Ionization Cooling is the key technology required to be able to realise a Neutrino Factory and a Muon Collider (akin to stochastic cooling that enabled proton-antiproton collider in 1980s)

Linac18, 16-21 September 2018

Muon Ionization Cooling Experiment

- Muon Ionization Cooling Experiment:
 - Letter of Intent: November 2001
 - Proposal at Rutherford Appleton Laboratory (RAL): January 2003
 - International collaboration built muon ionization cooling experiment at RAL

Muon Ionization Cooling Experiment

- □ We are extremely grateful to all the funding agencies that are contributing and have contributed to MICE
 - STFC from UK
 - NSF and DoE from USA
 - INFN in Italy, Swiss National Science Foundation, European Community, Institutional Funding in Bulgaria, Netherlands, Serbia
 - Japan Society for the Promotion of Science, Chinese Academy of Sciences, institutional funding South Korea

Muon beam, target, detectors and diffuser:

□ Muon beam, target, detectors and diffuser:

□ Muon beam, target, detectors and diffuser:

Muon beam, target, detectors and diffuser:

Muon beam, target, detectors and diffuser:

Muon beam, target, detectors and diffuser:

Muon Ionization Cooling Experiment

Cooling Channel with Partial Return Yoke

MICE Science Goals

- MICE goals: make first measurement of ionization cooling and explore change of emittance as a function of:
 - Input emittance: vary beam optics and diffuser thickness
 - Absorber material: liquid hydrogen (350mm), lithium hydride (65 mm) and 45° polyethylene wedge absorber
 - Momentum and optical beta function
- Change parameters of cooling formula to explore potential cooling performance of future facilities in detail

$$\frac{d\varepsilon_T}{dz} \approx -\frac{\varepsilon_T}{E_\mu \beta^2} \frac{dE_\mu}{dz} + \frac{\beta_\perp}{2mc^2 \beta^3} \frac{\left(13.6\,MeV\right)^2}{E_\mu X_0}$$

 ϵ_{T} = 3 mm, 6 mm, 10 mm X₀(LH₂) = 890 cm, X₀(LiH) = 102 cm, X₀(CH) = 47.9 cm p_µ= 140 – 240 MeV/c

MICE data set (2015-2017): 350x10⁶ triggers x10⁶

Multiple Coulomb Scattering

- First measurement of muon Multiple Coulomb Scattering in lithium hydride at 140-240 MeV/c:
 - Validation of Molière scattering model and Geant4

Details: poster by Tang

4D covariance

matrix: \sum_{4D}

Measurement of beam emittance

- Single particle reconstruction: creates virtual beams by performing ensemble of all particles
- □ 4D-phase space of particles: (x, p_x, y, p_y)
- □ Normalised RMS transverse emittance: \mathcal{E}_T =

Ellipsoid containing 4D phase-space RMS volume

x

Reconstructed phase space shows coupling of different variables for emittance calculation

mс

Ionization cooling implies reduction of transverse emittance after absorber

Details: poster by Z.H.Li C18, Beijing, 16-21 September 2018

Emittance evolution

- Measurement of emittance using single-particle method:
 - MICE data shows flat emittance as function of momentum

Transverse single-particle amplitude

□ Transverse single-particle amplitude:

Phase-space distance of muon from beam core

$$A_{\perp} = \mathcal{E}_T \mathbf{u}^T \Sigma^{-1} \mathbf{u}$$
 with $\mathbf{v} = (x, p_x, y, p_y)$ and $\mathbf{u} = \mathbf{v} - \langle \mathbf{v} \rangle$

- Mean amplitude is proportional to RMS emittance
- Ionization cooling reduces amplitude in the core of the beam (higher amplitude density at low amplitudes)

Change in amplitude across absorber

- □ No absorber: decrease in number of core muons
- □ Absorber: increase in number of core muons (cooling signal)

Downstream

- Cumulative core density increase for LH2 and LiH absorbers
- □ More cooling $(R_{Amp} > 1)$ at higher input emittances

LINAC18, Beijing, 16-21 September 2018

down

- Cumulative core density increase for LH2 and LiH absorbers
- □ More cooling $(R_{Amp} > 1)$ at higher input emittances

LINAC18, Beijing, 16-21 September 2018

down

- Cumulative core density increase for LH2 and LiH absorbers
- □ More cooling $(R_{Amp} > 1)$ at higher input emittances

LINAC18, Beijing, 16-21 September 2018

down

Cumulative core density increase for LH2 and LiH absorbers

down

□ More cooling $(R_{Amp} > 1)$ at higher input emittances

Fractional emittance evolution

□ Fractional emittance is phase-space volume occupied by fraction α of beam (α =9% is 1 σ of 4D phase space)

$$\varepsilon_{\alpha} = \frac{1}{2} (\pi m c \varepsilon_T)^2 \Longrightarrow \frac{\Delta \varepsilon_{\alpha}}{\varepsilon_{\alpha}} \approx \frac{2\Delta \varepsilon_T}{\varepsilon_T}$$

□ Fractional (9%) emittance evolution 6 mm, 140 MeV/c, LiH, flip

Reverse emittance exchange

- Emittance exchange: muon collider 6D cooling and g-2
- Reverse emittance exchange lengthens bunch and increases luminosity in MC
- Polyethylene wedge absorber

Conclusions

- The Muon Ionization Cooling Experiment (MICE) was constructed at RAL and collected 350 million triggers to fully characterise ionization cooling
- MICE is studying ionization cooling in detail: evolution transverse emittance beam amplitudes, multiple Coulomb scattering, energy loss, reverse emittance exchange

July 2018

Conclusions

- The Muon Ionization Cooling Experiment (MICE) was constructed at RAL and collected 350 million triggers to fully characterise ionization cooling
- MICE is studying ionization cooling in detail: evolution transverse emittance beam amplitudes, multiple Coulomb scattering, energy loss, reverse emittance exchange

MICE has demonstrated ionization cooling for the first time

July 2018

Conclusions

- The Muon Ionization Cooling Experiment (MICE) was constructed at RAL and collected 350 million triggers to fully characterise ionization cooling
- MICE is studying ionization cooling in detail: evolution transverse emittance beam amplitudes, multiple Coulomb scattering, energy loss, reverse emittance exchange

MICE has demonstrated ionization cooling for the first time

July 2018

 All main technologies required for neutrino factory and muon collider have now been demonstrated: ionization cooling (MICE), liquid mercury target (MERIT), Fixed Field Alternating Gradient accelerators (EMMA)

