

Institute of High Energy Physics Chinese Academy of Sciences

Beam diagnostics for CW and pulsed proton superconducting linac

Junxia Wu, Yong zhang, kewei Gu, Yuan Wei, Hongming Xie, Long Jing, Guangyu Zhu, IMP

Jianshe Cao, Yanfeng Sui, Huizhou Ma, Qiang Ye, Lingda Yu, Jun He, Ying Zhao, IHEP

DELES

Outline

- Review beam diagnostics for CW and pulsed proton superconducting linac
- Beam diagnostics developed for CADS 10-25 MeV CW proton linac
 - Beam current
 - Position, phase
 - Transverse profile, emittance
 - Energy spread
 - Longitudinal bunch shape
- Lessons, challenges and improvements

Outline

- Review beam diagnostics for CW and pulsed proton superconducting linac
- Beam diagnostics developed for CADS 10-25 MeV CW proton linac
 - Beam current
 - Position, phase
 - Transverse profile, emittance
 - Energy spread
 - Longitudinal bunch shape
- Lessons, challenges and improvements

Hadron Superconducting Linac Worldwide

	Beam	Energy (MeV/u)	Start Energy of SC Section (MeV/u)	frequency (MHz)	Ipeak (emA)	Imean (emA)	Operation mode	Status
SNS	H^-, H^+	1000	186	402.5	38	1.6	pulsed	Operation
PIP-II	H^-, H^+	800	2.1	162.5	5	1	Pulsed/CW	Construction
ESS	H^+	2000	90	352.2	62.5	2.5	pulsed	Construction
IFMIF	D^+	40	5	175	125	125	CW	Construction
SARAF	H^+, D^+	40	1.5	176	5	5	CW	Operation
CADS	H^+	25	2.1/3.2	162.5/325	10	10	CW	Operation
ATLAS	H^+ , ions	20	0.3	60.625	0.01	0.001	Pulsed/CW	Operation
SPIRAL2	$H^+, D^+,$ ions	33/20/15/ 8.5	0.75	88.0525	5/5/1	5/5/1	CW	Construction
ROAN	$H^+ \sim^{238} U$	600/200	0.5	81.25	0.66/0.0 08	0.66/0.00 8	CW	Construction
FRIB	$H^+ \sim^{238} U$	200	0.5	81.25	0.7	0.7	CW	Construction

.

Beam instruments for the proton SCL

- Beam current: Toroid, WCM, Faraday cup, EIDs
- Beam position and phase: Warm and cold BPMs
- Beam transverse profile: scrapers, wire scanner, grid, IPM, BIF, imaging, e-beam scanner
- Beam transverse emittance: Slit-grid, Allison, pepper-pot, phase space scans
- Beam energy: TOF
- Energy spread: Magnetic spectrometer, Rutherford scattering, Schottky signal, Doppler system
- Longitudinal bunch shape: BSM-INR Feschenko, FFC, BEM-SPIRAL2,
- **Beam loss:** Halo ring, ion chamber, scintillator-based detector, diamond/silicon detector, thermometer, neutron detector

System	LEBT	RFQ	MEBT	DTL	Spk	MBL	HBL	HEBT	A2T	DumpL	TOTAL
Position	0	0	7	15	14	9	21	16	12	4	98
Ionization profile	0	0	0	0	1	3	1	0	0	0	5
Fluorescence profile	1	0	2	0	0	0	0	0	1	0	4
Ionization chamber	0	0	0	5	52	36	84	49	37	6	269
Neutron detector	0	0	5	11	14	4	0	1	0	0	35
Wire scanner	0	0	3	0	3	3	1	3	1	0	14
Bunch Shape	0	0	1	0	1	1	0	0	0	0	3
Faraday cup	1	0	1	2	0	0	0	0	0	0	4
Current monitor	1	1	4	5	0	1	1	2	3	2	20
Emittance	1	0	1	0	0	0	0	0	0	0	2
Aperture monitor	0	0	0	0	0	0	0	0	3	1	4
Doppler	1	0	0	0	0	0	0	0	0	0	1
Multi-wire grid	0	0	0	0	0	0	0	0	1	0	1

Tom shea, IBIC2017 mo2ab2

FRIB driver linac diagnostics

Accelerator Systems - Diagnostics	TOTAL	FE	LS1	FS1	LS2	FS2	LS3	BDS
Beam Position Monitor	150	4	39 + 20	18	24	12	20	13
Beam Current Monitor (ACCT)	12	3		5		2		2
Beam Loss Monitor – Halo Monitor Ring	17		17	8	24	4	13	
Beam Loss Monitor - Ion Chamber	47			8		12	15	12
Beam Loss Monitor - Neutron Detector	24	1	9	1	12		1	
Beam Loss Monitor – Fast Thermometry System	240		192		48			
Profile Monitor (Lg., Sm. Flapper)	42	7L/4S/3F	2S	4L/7S		2L/2S	4S	2L/5S
Bunch Shape Monitor	1			1				
Allison Emittance Scanner (2 axis)	2	2	559 to	otal di	agn	ostic	dev	ices
Pepper pot emittance meter	1	1						
Faraday Cup	7	7						
Fast Faraday Cup	2	2						
Viewer Plate	5	5						
Selecting Slits System - 300 W	5	5 axes						
Collimating Apertures - 100 W	2	2						
Intensity Reducing Screen System	2	2						

J.Wei, et al., IBIC2017 molab1

SNS beam instruments

A.Aleksandrov, DIPAC09 MOPD21

Outline

- Review beam diagnostics for CW and pulsed proton superconducting linac
- Beam diagnostics developed for CADS 10-25 MeV CW proton linac
 - Beam current
 - Position, phase
 - Transverse profile, emittance
 - Energy spread
 - Longitudinal bunch shape
- Lessons, challenges and improvements

Chinese ADS(CADS) project

Beam instruments on CADS

HEBT Beam instruments on CADS

Beam Current Measurement

Detector

- ACCT for short Pulsed beam
- DCCT for long pulsed/CW beam
- Faraday Cup (beam dump)

Data acquisition: PCI 6712

- Channel : 4 Channels / Board ;
- Input Impedance : $1M\Omega / 20pF$;
- Sampling Frequency : 60 MS/s ;
- AD resolution: 12 bit,
- DC accuracy: 0.2 %;
- Sampling Length 16 MS
- Sampling Delay : ±16 MS
- Trigger mode: internal, external
- Range : $\pm 100 \text{ mV}_{\times} \pm 200 \text{ mV}_{\times} \pm 500 \text{ mV}_{\times}$
 - $\pm 1 \text{ V}$, $\pm 2 \text{ V}$, $\pm 4 \text{ V}$, $\pm 10 \text{ V}$, $\pm 20 \text{ V}$ Bandwidth : $0 \sim 20 \text{ MHz}$ (-3 dB);
- Bandwidth $\cdot 0 \sim 20$ MHZ (-3 dB)
- DI/DO: 16

Motion Control: Servo-Motor@EtherCAT

Beam Current Measurement

Position, Phase and Energy Measurements

Stripline

Capacitive-Warm BPM

Button – Cold BPM

- Output: X, Y, Sum, phase (a) f1 and f2
- Interlock signal: adc, position, sum, and phase
- Interlock response time:
 < 6 μs

Position, Phase and Energy Measurements

Transvers Profile, Emittance Measurements

- **Profile:** Wire / scraper+FC
- Emittance: Wire + Slit / slit+slit+FC
- Max Sampling rate :60 MS/s
- Precise :12 bit
- Storage :16 M
- Absolute position accuracy (sensor): 0.5 mm
- Position resolution: 0.01 mm

Energy, Momentum Spread Measurements

Energy, Momentum Spread Measurements

Longitudinal Bunch shape measurements

Fast Faraday Cup (FFC): stripline structure with 50 ohm

Beam

Inlet

Longitudinal Bunch shape measurements

• Secondary electron emission (INR)

Resolution: 6 ps

User: CERN Linac 4/3/2, FAIR GSI, FRIB MSU, ESS ERIC, SNS, DSEY H⁻ LINAC, J-PARC, LANSCE, SSC

Longitudinal Bunch shape measurements

Outline

- Review beam diagnostics for CW and pulsed proton superconducting linac
- Beam diagnostics developed for ADS 10-25 MeV CW proton linac
 - Beam current
 - Position, phase
 - Transverse profile, emittance
 - Energy spread
 - Longitudinal bunch shape
- Lessons, challenges and improvements

Challenges and lessons

Lesson learnt: for high current long pulsed/CW linac beam, beam can melt everything or drill a hole everywhere if something is wrong, except the beam dump at the right position.

Challenges and lessons

Lesson learnt: for high current CW/long pulsed linac beam, beam can melt everything or drill a hole everywhere if something is wrong, except the beam dump at the right position.

Stainless steel (316L)'s temperature_{max} with time

Challenges and lessons

Lesson learnt: for high current CW/long pulsed linac beam, beam can melt everything or drill a hole everywhere if something is wrong, except the beam dump at the right position.

- > Importance of beam loss monitoring and machine protection system!!
- High average beam power needs minimally invasive diagnostics
- Diagnostics and instrumentation must be fully integrated with timing and machine protection system.

Beam instruments challenges for high power long pulsed/CW beam:

- Big challenge for invasive diagnostics
- Beam loss monitoring for low energy intense beam
 - Low detection sensitivity on low-energy beam
 - Short range, high power concentration

• Beam halo measurement for high power beam in CW machine

- Significant fraction
- Must be understood to prevent slow degradation of superconducting RF cavities under long term "slow" beam loss conditions
- Errant beam diagnostics (SNS): sudden beam loss caused by offnormal beam pulse or pulses
 - Damage the SCL cavities: beam hitting rf cavity surface desorbs gas and creates an environment for arcing / discharge
 - Super Conducting Linac (SCL) cavity performance degrades over time

Challenges and lessons – invasive diagnostics

lessons and improvements – IPM

Field inhomogeneity: 0.11% > 0.03%

lessons and improvements – E-beam scanner

• Thermometer

Yuan He, HB2018, MOP1WB01

IM

- Beam loss monitoring experiment for low energy beam at 18.3 MeV
- Beam: proton (pulse length10µs)
- Energy: 18.3 MeV
- Intensity: 1 emA
- Detector: scintillator and diamond
- Comparison with difference ACCTs

HEBT

• Beam loss monitoring experiment for low energy beam at 18.3 MeV

Conclusion: scintillator is much more sensitive than diamond detector (10 mm*10 mm)

IM

• Beam loss monitoring experiment for low energy beam at 18.3 MeV

- There is a linear relationship between BLM's signal and beam loss at 18.3 MeV.
- The scintillator BLM is very sensitive for proton beam loss at 18.3 MeV.

IM

Lessons and improvement – Errant beam measurement

• DBCM development

Lock Signal

Lessons and improvement – Errant beam measurement

Lessons and improvement – beam halo measurement

Measured Beam Loss

•

Summary

- CADS 10-25 MeV proton linac have been constructed
 - Diagnostics are well developed
 - Beam commissioning: nearly all beam parameters have been measured except the longitudinal emittance (FFC less resolution)
- The work planned to do
 - DBPM
 - BSM (high resolutoin)
 - Beam loss detection, especially inside CM
 - More beam time for the beam instruments test
 - High reliability, availability,

Acknowledgments to Linac 2018 committee, my colleague Huan Jia

Thank you for your attention ! Any comments welcomed!