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The discovery of N-doping
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• Standard ILC  treatment:

𝑄 ~1.7 ∙ 1010

• N-doping:

𝑄 ~3.5 ∙ 1010
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Anti-Q-slope

A. Grassellino et al., Supercond. Sci. Technol. 26, 102001 (2013) – Rapid Communications
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Jefferson Lab Cryoplant 
(completed 2012)

 SLAC / LCLS-II to be similar 
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The N-doping Timeline
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2012
Discovery of N-doping 2013

R&D effort to make N-doping 
controllable and reproducible2013

Discovery of ‘light doping’: 
improvement of the accelerating 
field maintaining high Q-factors 2014

LCLS-II invested in the 
technology, collaboration FNAL, 

JLAB and Cornell University 2014 and 2015  
More than 100 N-doped cavities tested, 
18 cavities qualified for the 2 prototype 

cryomodules

2015 and 2016 
R&D continues for further understanding and improvement

Low-T N-infusion combines higher Q with quench fields up to 45 MV/m
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N-doping treatment
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N-doping treatment
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N-doping treatment (example: the “2/6 recipe”)
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N-doping treatment (example: the “2/6 recipe”)
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N-doping treatment (example: the “2/6 recipe”)
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N-doping treatment (example: the “2/6 recipe”)
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N-doping treatment (example: the “2/6 recipe”)
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N-doping treatment (example: the “2/6 recipe”)
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Origin of the anti-Q-slope
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A. Grassellino et al, Supercond. Sci. Technol. 26 102001 (2013) - Rapid Communications 
A. Romanenko and A. Grassellino, Appl. Phys. Lett. 102, 252603 (2013)



Origin of reduction of RF surface resistance via N-doping
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 N-doping seems to increase the reduced energy gap D/kTc

~15 nm - no 
screening

N-doped: 
mfp~40 nm

EP: mfp
> 400 nm

A. Romanenko et al, Appl. Phys. Lett. 104, 072601 (2014)
A. Grassellino et al, Proc. of SRF2015

120C bake: 
mfp~2-16 nm
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M. Martinello et al, Appl. Phys. Lett. 109, 062601 (2016)

M. Martinello TUPLR023
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Trapped Flux Surface Resistance
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𝑅𝑆 2 𝐾, 𝐵𝑇𝑟𝑎𝑝 = 𝑅𝐵𝐶𝑆 2 𝐾 + 𝑅0 + 𝑅𝐹𝑙

These losses can be reduced by minimizing these contributions:

𝑹𝑭𝒍 = 𝑩𝒆𝒙𝒕 ∙ 𝜼 ∙ 𝑺
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𝐵𝑒𝑥𝑡

• Magnetic shielding/hygiene 
improvement

𝜂

• Fast Cooling
• Material Optimization

S
• Optimizing mean free path



Trapped Flux Surface Resistance

19 Martina Martinello | LINAC 2016

𝑅𝑆 2 𝐾, 𝐵𝑇𝑟𝑎𝑝 = 𝑅𝐵𝐶𝑆 2 𝐾 + 𝑅0 + 𝑅𝐹𝑙

These losses can be reduced by minimizing these contributions:

𝑹𝑭𝒍 = 𝑩𝒆𝒙𝒕 ∙ 𝜼 ∙ 𝑺

9/28/2016

𝐵𝑒𝑥𝑡

• Magnetic shielding/hygiene 
improvement

𝜂

• Fast Cooling
• Material Optimization

S
• Optimizing mean free path

External 
magnetic 

field



Minimization of remnant field in the cryomodule
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Demagnetization

Empty vacuum vessel Assembled Cryomodule

Coils for magnetic field demagnetization

Demagnetization

S. K. Chandrasekaran TUPLR027 9/28/2016



Trapped Flux Surface Resistance
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Fast cooldown helps flux expulsion
• Fast cool-down lead to large thermal gradients which promote

efficient flux expulsion

• Slow cool-down → poor flux expulsion

A. Romanenko et al., Appl. Phys. Lett. 105, 234103 (2014)
A. Romanenko et al., J. Appl. Phys. 115, 184903 (2014)
D. Gonnella et al, J. Appl. Phys. 117, 023908 (2015)
M. Martinello et al., J. Appl. Phys. 118, 044505 (2015)
S. Posen et al., J. Appl. Phys. 119, 213903 (2016)
S. Huang, Phys. Rev. Accel. Beams 19, 082001 (2016)

T1

T2

All flux trapped

Efficient flux expulsion

Bsc/Bnc=1.74 after complete 
Meissner effect

Bsc/Bnc=1 after 
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High T baking for flux expulsion improvement
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• Not all materials show good flux expulsion even with large 
thermal gradient

• High T treatments are capable to improve materials flux 
expulsion properties

S. Posen et al., J. Appl. Phys. 119, 213903 (2016)
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High T baking for flux expulsion improvement
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Trapped Flux Surface Resistance
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Light doping to minimize trapped flux sensitivity
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𝑺 =
𝑹𝑭𝒍

𝑩𝑻𝒓𝒂𝒑

Trapped flux sensitivity:

• Bell-shaped trend of 𝑆 as
a function of mean free
path

• N-doping cavities present
higher sensitivity than
standard treated cavities

• Light doping is needed
to minimize trapped flux
sensitivity

M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)
D. Gonnella et al., J. Appl. Phys. 119, 073904 (2016)M. Martinello TUPLR023
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Understanding the Sensitivity vs Mean-free-path
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 Dissipation due to vortex oscillation 
under the RF field

We can define two regimes:

1. Large 𝑙 (𝑝 → 0) – flux flow regime:

⇒ 𝜌1 𝑙 ~
1

𝜂𝜔
, decreases with 𝑙

2. Small 𝑙 (𝜂 → 0) – pinning regime:

⇒ 𝜌1 𝑙 ~
𝜂𝜔

𝑝2
, increases with 𝑙

Pinning
regime

Flux-flow
regime

M. Checchin et al., submitted to SUST
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The advantage of N-doping in condition of full flux-trapping
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M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)



The advantage of N-doping in condition of full flux-trapping
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Gain in Q-factor given by the
N-doping in condition of full
flux trapping
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M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)



The advantage of N-doping in condition of full flux-trapping

Martina Martinello | LINAC 201630

12

15

M. Martinello TUPLR023

N-doping wins over standard
treatments as long as the field
trapped is <10 mG
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M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)



Example with LCLS-II specifications
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M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)

To reach 𝑄 = 2.7 ∙ 1010 we can 
afford 2.5 mG fully trapped



Example with LCLS-II specifications
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M. Martinello et al., App. Phys. Lett. 109, 062601 (2016)

Ambient B<2 mG for the LCLS-II Fermilab prototype
cryomodule (see S.K. Chandrasekaran TUPLR027)

To reach 𝑄 = 2.7 ∙ 1010 we can 
afford 2.5 mG fully trapped
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State of the art: high T and low T N-doping
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NEW- Low temperature (120-160 C) N-
doping:
• Doping at very low T – few nanometers of N 

enriched layer
• Very High Q at both medium and high 

accelerating fields
• No quench field limitations (up to 45 MV/m)
• Work ongoing

(See M. Checchin TUPLR024 for theoretical model)

• >100 processed cavities 1.3 GHz and 650 MHz 
single and multicells

• Typical Q factors ~ twice state of the art 
• Prototype cavities for LCLS-II:

<Q> ~ 3.5e10 @ 2K 16 MV/m, <Eacc> ~ 22 MV/m
• First production cavities for LCLS-II:

<Q> ~ 2.5e10 @ 2K 16 MV/m, <Eacc> ~ 23 MV/m            
(see M.C. Ross MOA01)

High T (800C) N-doping:



Demonstration in a cryomodule-like environment
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Q can be perfectly preserved from bare
cavity test to fully jacketed state with RF
ancillaries, in cryomodule environment



Demonstration in a cryomodule-like environment
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Q can be perfectly preserved from bare
cavity test to fully jacketed state with RF
ancillaries, in cryomodule environment

More on LCLS-II cavity production and Fermilab prototype 
cryomodule results:
E.R. Harms MOPLR022
M.C. Ross MOA01
A. Burrill MOPLR020
G. Wu TUPLR008
A. Palchewski MOPLR026



N doping applied to FNAL PIP-II 650 MHz cavities 
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• 650 MHz: single cell processing developed and several multi-cells 
successfully tested with Q at 2K, mid field > 4e10Nitrogen doping of a 5-cell 650 MHz cavity for PIP-II

4/12/16Alexander Romanenko | FCC Week 2016 - Rome28

Lots of multipacting
and FE due to non-
optimized HPR nozzle

Still by far exceed spec

~7e10 at lower fields!

650 MHz 5-cells650 MHz 1-cell

FE/MP

A. Rowe MOPLR043
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• Record Q at medium and high accelerating gradients reproducibly
achieved with N doping technology, from single cell cavities to
multi-cells cavities in accelerator environment, at different labs,
technology now transferred to industry

• LCLS-II specifications exceeded at three different institutions via N
doping
 Prototype cryomodule measurement at FNAL already started!

• Efficient magnetic flux expulsion can be achieved with fast
cooldown and material optimization

• N-doping even with larger B-sensitivity leads to higher Q-factors
than state of the art treatments for trapped B< 10 mG

• Very High-Q at ultra high gradients now possible with low T N-
doping

Conclusions
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Thank you for your attention!
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