

Performance Analysis of the European XFEL SRF Cavities, From Vertical Test to Operation in Modules

Nick Walker (DESY)

D. Reschke, J. Schaffran, L. Steder, M. Wenskat, DESY L. Monaco, INFN Milano

MO1A01 H. Weise "Status of the European XFEL"

- WE1A02 S. Berry "Assembly of XFEL cryomodules: Lessons and Results.
- This talk:
 - Vertical test (VT) results from 816 cavities
 - Cryomodule test results compared to VT
 - Predicted linac performance

Statistical analysis

EL MHOL

European Vertical tests at AMTF

LINAC'16, East Lansing, Michigan, USA Nick Walker et al, DESY

XFEL Statistics of Cavities + Vertical Acceptance Tests

- Cavity production finished with last delivery in Mar 2016:
 - (800 + extra 4) Series Cavities
 - 24 ILC "HiGrade"-Cavities (w/o He-tank; QC) → 8 converted to series cavities
 - 16 Cavities for infrastructure commissioning ("RCV", "DCV")
 → 4 converted to series cavities

→ 816 XFEL series cavities available + vertically tested

- Analysis of vertical acceptance tests includes
 - Series Cavities
 - ILC "HiGrade"-Cavities (w/o He-tank; QC)
 - NO infrastructure commissioning tests

Stable average vertical test rate ~40 tests/month achieved

European As Received Maximum Gradient in the VT

Performance of Superconducting Cavities for the European XFEL

typical individual error: 10%

ASSOCIATION

XFEL As Received Usable Gradient in the VT

typical individual error: 10%

		Max
Average	MV/m	31.4
RMS	MV/m	6.8
Median (50%)	MV/m	32.5
Yield ≥20 MV/m		92%
Yield ≥26 MV/m		85%

LINAC'16, East Lansing, Michigan, USA

Nick Walker et al, DESY

Include operations spec

- $Q_0 \ge 1 \times 10^{10}$
- FE threshold (X-ray)

→ Usable Gradient

XFEL Usable gradient: limiting effects

- Q₀ dominates at higher gradients (high-gradient Q-slope)
- Field Emission (FE) dominates <24 MV/m</p>
- Quench (BD) not dominant –mostly higher gradients

HELMHOLTZ

ASSOCIATION

XFEL Recovering low performance cavities

- *E*_{usable} <20 MV/m rejected
 - Approx. 15% cavities
- Sent for surface retreatment
 - Mostly High Pressure Rinse (HPR)
 - Small fraction Buffered Chemical Polishing (BCP) and/or "grinding"

□Rejected Accepted 100 80 Cavities 60 40 20 0 10 20 30 40 50 0 Usable gradient (MV/m)

		Max	Usable
Average	MV/m	31.4	27.7
RMS	MV/m	6.8	7.2
Median (50%)	MV/m	32.5	28.7
Yield ≥20 MV/m	>	92%	86%
Yield ≥26 MV/m		85%	66%

Number of retreatments after the 1st vertical test

- Approx. 22% of cavities had ≥1 retreatment
 - ~15% performancedriven
 - ~7% due to vacuumand mechanicalrelated problems (mostly HPR)
 - 5% had 2 or more retreatments.
 - including both chemical and mechanical (grinding)

SSOCIATION

4

ASSOCIATION

European Final performance (sent for module assembly) XFEL

 $\langle E_{\text{usable}} \rangle = 29.8 \pm 5.1 \text{ MV/m}$

Average \pm RMS:

European

4 MV/m: $2.1\pm0.3 \times 10^{10}$ 23.6 MV/m: $1.3 \pm 0.3 \times 10^{10}$

Estimated measurement error 10-20%

XFEL spec: ≥10¹⁰

XFEL Cryomodule assembly at CEA Saclay

C

DES

XFEL Cryomodule assembly at CEA Saclay

DES

Performance of Superconducting Cavities for the European XFEL

XFEL Cryomodule assembly at CEA Saclay

the study shall cover clean room assembly and the assembly outside cleanroom

Startpoint: string assembly in cleanroom

room assembly

(all parts are tested and ready for assembly)

Assembly outside cleanroom

LCFOA, FNAL, Sept 05; D. Proch, DESY

Performance of Superconducting Cavities for the European XFEL

Cryomodule assembly at CEA Saclay

the study shall cover clean room assembly and the assembly outside cleanroom

Startpoint: string assembly in cleanroom

room assembly.

(all parts are tested and ready for assembly)

Assembly outside cleanroom

LCFOA, FNAL, Sept 05; D. Proch, DESY

Europea

XFEL VT vs MT: Making Comparisons

	VT	МТ	
Maximum gradient	No administrative limit	limited to 31 MV/m	<i>True impact unknown (but can set an upper limit)</i>
Field Emission (X-Ray)	Two monitors above and below cryostat	Two monitors upstream and downstream of cryomodule axis	Different geometry / calibration makes exact comparison difficult
Q ₀	RF measurement	~1 hour 2K cryoload measurement with all cavities on resonance	No Q ₀ limit taken in MT definition of usable gradient.
General	CW measurement	Pulse RF measurement (10% duty cycle)	Systematic errors and uncertainties

Performance of Superconducting Cavities for the European XFEL

XFEL VT vs MT: Making Comparisons

		VT	МТ	
Maximum	n gradient	No administrative limit	limited to 31 MV/m	<i>True impact unknown (but can set an upper limit)</i>
Field Em (X-Ray)	when mak	king comparisons,		geometry / on makes mparison
Q ₀		N measurement	measurement with all cavities on resonance	MO Q ₀ Inhit taken in MT definition of usable gradient.
General		CW measurement	Pulse RF measurement (10% duty cycle)	Systematic errors and uncertainties

A quench (BD) below 31 MV/m can be compared

VT capped at 31 MV/m for fair comparison

~3% difference measured this way

 N_{cavs}
 Average
 RMS

 VT
 815
 28.3 MV/m
 3.5

 CM
 815
 27.5 MV/m
 4.8

LINAC'16, East Lansing, Michigan, USA

Nick Walker et al, DESY

European
XFELVertical Test - Cryomodule comparison:
Q0-values at ~ 23MV/m

ELMHOLT

ASSOCIATION

Degradation defined as ≥20% (red)

Average (blue line) is good but spread within modules is still quite large \rightarrow "Fine tuning" of waveguide distribution to maximise energy gain.

ELMHOLT

XFEL Into the LINAC

LINAC'16, East Lansing, Michigan, USA Nick Walker et al, DESY

C

European
XFELImpact of Waveguide Distribution (WD) system
(Installed Gradient)

- 1 10-MW klystron drives four modules (32 cavities)
- WD for cryomodules tailored for MT results
 - maximising voltage
 - up to 3dB difference between cavity pairs
- Allow up to 3dB split between adjacent cryomodule pairs
- Equal power output from two klystron arms

see THPLR067 Choroba, Katalev, Apostolov

Performance of Superconducting Cavities for the European XFEL Impact of Waveguide Distribution (WD) system European (Installed Gradient)

- 1 10-MW klystron drives four modules (32 cavities)
- WD for cryomodules tailored fo results
 - maximising voltage
 - up to 3dB difference betweer cavity pairs
- Allow up to 3dB split between adjacent cryomodule pairs
- Equal power output from two kl arms

15.0

20

40

Cryomodule position in linac

30.0

60

MT

Installed

European **Projected installed energy profile** XFEL

Nick Walker et al, DESY

(4 cryomodules)

26.3 MV/m Installed linac

?? Measured with beam

Coming soon End of 2016!

XFEL Thanks to all colleagues of:

- IFJ-PAN Krakow (esp. J. Swierblewski, M. Wiencek)
- CEA Saclay
- INFN Milano
- Ettore Zanon
- Research Instruments
- Daher Transkem
- Alsyom
- DESY

