Linac-Based Free Electron Lasers in China

Zhentang Zhao

Shanghai Institute of Applied Physics, Chinese Academy of Sciences LINAC16, East Lansing, 25-30 September, 2016

Outline

Introduction

- SDUV-FEL Program
- DCLS User Facility
- SXFEL Projects
- HXFEL Plan

Summary

Introduction

FEL Development in China

- Linac-based FELs have been being developed in China since mid-1980s, when the BFEL was proposed and built lately as the FEL first lased in Asia;
- Later on in late 1990s, a high-gain FEL program called SDUV-FEL was initiated; It started the FEL tests (SASE, HGHG and ECHO), from 2009;
- In mid-2000s, a soft X-ray FEL test facility (SXFEL) was proposed and began its construction in 2014; Its user facility project just founded and started this year;
- In early 2010s, an EUV-FEL, DCLS, was initiated and funded in 2013, it is in the commissioning now;
- In addition, a hard X-ray FEL facility was proposed and listed in the next 5-year plan of China's large scientific infrastructures to be built.

High-gain FELs Constructed and Planned in China

	SDUV-FEL	DCLS	SXFEL	HXFEL
	Test facility	User facility	Test/User	User
Status	Operating	Commissioning	Construction	Plan
Wavelength	150-350nm	50-150nm	2-40nm	0.1nm
Length	65m	150m	300-530m	530m
Main linac	S-band	S-band	C-band	C/X band
Beam energy	100-180MeV	300MeV	0.84-1.6GeV	6.0GeV
FEL principle	HGHG, EEHG	HGHG	HGHG, EEHG	SASE ECHO Cascade
Location	Shanghai	Dalian	Shanghai	Shanghai
First lasing	2009.09	2016	2017	?

SDUV-FEL Program

SDUV-FEL Program

- Shanghai Deep Ultra-Violet Free-Electron Laser (SDUV-FEL) is a ~180MeV linac based seeded FEL test facility.
- Funding partially supported by
 - Chinese Academy of Sciences / CAS
 - Ministry of Science and Technology of China / MOST
 - National Natural Science Foundation of China / NSFC
- Collaborating institutes include USTC, IHEP, THUB and SINAP
- Be a test bed of the key technologies for high gain FELs

SDUV-FEL layout

SDUV-FEL : seeded FEL Experiments

FEL Experiments @ the SDUV-FEL

- ➢ 2009.09: SASE lasing
- 2010.05: First echo signal observed
- 2010.12: HGHG saturation
- > 2011.04: EEHG-FEL lasing
- > 2011.12: HGHG tunability based on OPA
- > 2012.04: Cascaded HGHG signal Oberserved
- > 2013.08: EEHG@10th harmonic obtained
- 2013.11: Crossed undulator polarization control
- > 2014.04: FEL control with corrugated structure
- on going: CPA and PEHG demonstration
 - C. Feng, et al., Phys. Rev. ST Accel. Beams, **14** (2011) 090701.
 - Z.T. Zhao, et al., Nat. Photonics, 6 (2012) 360-363.
 - B. Liu, et al., Phys. Rev. ST Accel. Beams, **16** (2013) 020704.
 - H. Deng, et al., Phys. Rev. ST Accel. Beams, **17** (2014) 020704.
 - H. Deng, et al., Phys. Rev. Lett, **113** (2014) 254802.
 - Z.T. Zhao and D. Wang, IEEE Trans. on NS, Vol: 63, No: 2, 930-938, (2016)

SDUV-FEL Parameters

Parameters	Design	Achieved	Unit
Output Wavelength	266	250~400	nm
Bunch charge	1	0.1	nC
Energy	150	100~180	MeV
Energy spread	0.2	0.2	%
Energy spread (sliced)	-	0.005	%
Normalized emittance	4	2~3	mm.mrad
Pulse length (FWHM)	3	~3	ps
Peak current	300	~30	А
Rep. rate	2	2	Hz

DCLS User Facility

DCLS User Facility

- Dalian Coherent Light Source (DCLS) is a single stage HGHG-FEL in the wavelength range of 50 – 150 nm for chemical dynamics research;
- DCLS is based on a S-band NC linac of 300MeV with a rep-rate of 1-50Hz, providing full coherent radiation with fs-ps pulse length;
- The building and facility construction started in 2014, and the beam commissioning started in September 2016.
- The project was founded by, its design and construction were made by SINAP, DICP &USTC ;

DCLS Layout and Parameters

Start-to-end results: 50nm HGHG

DCLS-FEL Commissioning Progress

Parameters	Design	Achieved	Unit
Output Wavelength	50~150	-	nm
Bunch charge	0.5	0.52	nC
Energy	0.3	0.33	GeV
Energy spread	0.15	0.12	%
Normalized emittance	2	~1.6	mm.mrad
Bunch length (FWHM)	2	~2	ps
Peak current	300	~250	А
Rep. rate	10-50	10	Hz

SXFEL Projects: SXFEL-TF and SXFEL-UF

SXFEL Facility: TF +UF Projects

- SXFEL facility consists of two projects independently funded, SXFEL test facility + SXFEL user facility, with a total budget of ~155M\$;
- SXFEL test facility was initiated in 2006 and founded in 2014, its ~300m long building was completed in April 2016, its 0.84GeV linac and undulators are in installation now, aiming at lasing in early 2017;
- SXFEL user facility was just founded to upgrade the linac energy to 1.6GeV for building two undulator lines with 5 experimental stations in the water window region, aiming at serving users in 2019.

SINAP, THUB and ShanghaiTech are collaborating in the design and construction of the SXFEL facility

Test Facility: SXFEL-TF

A seeded FEL with two-stage HGHG or EEHG +HGHG based on an 0.84GeV linac and located in the campus of SSRF, closing to its synchrotron;

Injector beam parameters

Main linac beam parameters

Bunch charge (nC)	0.5	Bunch charge (nC)	0.5
Beam energy (MeV)	129.4	Beam energy (GeV)	0.84
Pulse length (ps, FWHM)	9	Bunch length (ps, FWHM)	≤ 1.0
Norm. emittance (mm.mrad,	0.05	Norm. emittance (mm.mrad)	< 2.0
rms)	0.95	Energy spread (rms)	< 0.15%
Energy spread (rms)	< 0.14%	Rep-rate (Hz)	1-10
Rep-rate (Hz)	1-10	Peak current (A)	≥ 500

FEL parameters

	Baseline I (8.8nm)		Baseline II (6.3nm)
Scheme	HGHG-HGHG	EEHG-HGHG	HGHG-HGHG
Harmonics	6 × 5	6 × 5	7 × 6
Beam energy	730MeV	730MeV	840MeV
FEL wavelength	8.83nm	8.83nm	6.3nm
FEL pulse	< 100fs	<100fs	< 100fs
FEL power	>100MW	>100MW	>100MW

SXFEL-TF Layout

SXFEL-TF: Building

Technical hall and Accelerator tunnel

Case 1:C-band Linac System

- Technical R&Ds and prototypes were made, including RF, undulator, BI,...
- 1.8m C-band structure was successfully developed at SINAP;
- Its accelerating gradient reaches 50MV/m with beam;

ź

Accelerating Gradient Measurement Beam Test ····· Fitting Curve

85

Peak Power from Pulse Compressor / MW

145

Case 2: Undulator System

Undulators and Vacuum Chamber

3m undulator

User Facility: SXFEL-UF

A soft X-ray FEL user facility based on SXFEL-TF with two undulator line, a seeded FEL line and a SASE FEL line, is founded mainly by Shanghai local government, aiming at opening to users in 2019

Linac energy upgrade: ~1.6GeV

FEL1: Seeded FEL line: add 7 undulator units Stage-1 FEL CH1 -2 U40-3 U40-4 U80-1 U80-2 CH4 CH2 140-1 Stage-2 FEL U23.5 U23.5 U23.5 U23.5 U23.5 U23.5 U23.5 EPU-1 EPU-2 U23.5 TDS U23.5

FEL2: SASE FEL line: build 10 in-vacuum undulator sections

SXFEL-UF

5 experimental stations:CDI, AMO, Ultrafast physics, Surface chemistry, Photon-electron;

SXFEL Facility Parameters

Parameters	Test Facility	User FEL1	User FEL2	Unit
Output Wavelength	9	3-10 (design)	2-10 (design)	nm
		2-40 (goal)	1.2-10 (goal)	
FEL type	HGHG	HGHG	SASE	
	EEHG	EEHG		
Bunch charge	0.5~1	~0.5	~0.5	nC
Beam Energy	0.84	1.0-1.6	1.0-1.6	GeV
Energy spread	0.1~0.15%	0.1~0.15%	0.1~0.15%	
Energy spread (sliced)	0.02%	0.02%	0.02%	
Normalized emittance	<2.0	<1.5	<1.5	mm.mrad
FEL Pulse (FWHM)	~0.5	0.03 -0.7	~0.7	ps
Peak current	~0.5	0.7	0.7	kA
Rep. rate	1~10	10-50	10-50	Hz

A Hard X-ray FEL Facility Plan (HXFEL)

A Compact Hard X-ray FEL @ SSRF campus

- A high gradient linac (C-band or X-band) based hard X-ray FEL has been planned in the same building of SXFEL
- A two beam based seeded scheme of ECHO is considered for building a fully coherent hard X-ray light source

HXFEL baseline (SASE)

540m

Electron beam		Undulator		
Beam energy	6 GeV	Period	15 mm	
Peak current	3 kA	Undulator length	100 m	
Bunch charge	200 pC	FEL		
Normalized emittance	0.4 mm mrad	FEL wavelength	~0.1 nm	
Bunch length	100 fs	Output power with	100 GW	
RMS slice energy 1e-4		taper		
spread		Photons/pulse	10 ¹³	
Repetition rate	50 Hz	Saturation length	40 m	

A New HXFEL Scheme (EEHG cascade)

Soft x-ray FEL beamline

Soft x-ray beamline: 1.6 GeV Output wavelength: 4.5 nm

Hard x-ray beamline: 6 GeV Output wavelength: 0.15 nm

- Linac-based FELs have been developed slowly in China over the last 20 years, SDUV-FEL and DCLS have led a complete R&D for the follow-up projects;
- The SXFEL projects, which consisting of the SXFEL-TF and the SXFEL–UF, is underway in two phases, aiming at opening to user experiments in 2019;
- A hard X-ray FEL facility has been proposed and listed in the 5-year plan of China's large scientific infrastructures from 2016 to 2020;
- In the mean time, a SRF linac based XFEL is also under consideration in China.

