

Low Emittance and High Current Electron Linac Development at Tsinghua University

Chuanxiang Tang tang.xuh@tsinghua.edu.cn

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

East Lansing, MI USA 25-30 September

Outline

- High Brightness Electron Beam
- Photocathode RF Gun Development at THU
- Tsinghua Thomson Scattering X-ray Source (TTX)
- Coherent THz Radiation of an electron bunch train generated by NSCO
- Summary

Brightness of an electron beam

The brightness distribution **B** is the density in 6-D phase space

 (x, p_x, y, p_y, t, E)

where *t* is the arrival time, *E* is the kinetic energy canonical to *t*. When the system has a Hamiltonian, **B** is invariant along each particle trajectory in an accelerator.^[*]

If the electron beam is axis symmetry, its brightness can be written as:

* Handbook of Accelerator Physics and Engineering, 2nd Edition. P318. "Brightness", P. Elleaume, KJ Kim.

High brightness electron beam

High brightness electron beam

Electron gun is the most important part of a linac for high brightness electron beams

Emittance growth inside an electron gun

Other effects need to be considered inside an electron gun

Kinds of electron guns

The XFELs and Their Electron Guns

David H. Dowell, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010 FEL2014-THP011, IPAC2014-THPRO034, Nature Photonics 2012141. R. Akre et al., PRST-AB (2007) Y. Ding et al., PRL 102, 254801(2009 PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS **10**, 020703 (2007)

The XFELs and Their Electron Guns

David H. Dowell, ICFA Beam Dynamics Workshop on Future Light Sources, March 1-5, 2010 FEL2014-THP011, IPAC2014-THPRO034, Nature Photonics 2012141. R. Akre et al., PRST-AB (2007) Y. Ding et al., PRL 102, 254801(2009 PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS **10**, 020703 (2007)

Photocathode RF Gun Development at THU

2011

Parameters	Value	Unit
PI mode frequency	2856	MHz
Quality factor Q ₀	14000	
Coupling factor β	1.3	
Electric field on cathode	120	MV/m
RF pulse width	1.7	μs
Repetition rate	10	Hz
Peak power of wall heat loss	9.4	MW
Input RF peak power	11.3	MW
Cathode material	Copper	
QE	4 × 10 ⁻⁵	
dark current at 120 MV/m	< 250	pC/pulse

The unloaded quality factors and 0-pi mode separations of the three generations of the photocathode rf gun developed by THU

L. M. Zheng *et al.*, Nucl. Instrum. Methods Phys. Res Sect. A 834, 98-107 (2016) H. Qian *et al.*, in the proceedings of FEL 2012 H.Qian *et al.*, in the proceedings of IPAC2011

The gun designed to eliminate the multiple modes

	Dipole	Quadruple
BNL	2E-03	2E-02
LCLS	9E-06	5E-05
THU	7E-05	1E-05

*CST simulation, H_{ϕ} analysis @ r=10mm

Emittance caused by the multipole modes

Cathode Physics is important for ultra-low emittance electron beam

 ε_{sc}^2 $+\varepsilon_{rf}^{2} + \varepsilon_{mp}^{2} + \varepsilon_{Bz}^{2} + 2\eta\varepsilon_{sc}\varepsilon_{rf}^{2}$

Initial Emittace or Thermal Emittance

- \mathcal{E}_{sc} Space Charge Emittance
- \mathcal{E}_{rf} RF Emittance

 \mathcal{E}_{th}

- \mathcal{E}_{mp} Multi-pole mode of RF field caused Emittance
- \mathcal{E}_{Bz} Emittance because of Magnetic field Bz at cathode surface
- η Coupling between space charge effect and RF effect
- Temittance at the Cathode:
 - thermal emittance emittance caused by the roughness

Thermal emittance of metal photocathode

D. Dowell, et al , Nucl. Instrum. Methods Phys. Res. A 622, 685, 2010.

David H. Dowell and John F. Schmerge, PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 12, 074201 (2009)

Roughness caused thermal emittance

FIG. 7. Cathode surface morphology measured by a white light interferometer, and rms roughnesses are (a) 233 nm, (b) 653 nm, (c) 1420 nm, and (d) 36.5 nm.

HJ Qian et al, PRST Vol.15 Issue:4, 2012

item	γε ^{95%}	γε ^{100%}
$\hbar\omega - \phi_{w}$	0.44 eV	0.88 eV
β	0.92	3.62
Surface roughness emittance @ 50 MV/m	0.87 μm/mm	1.11 μm/mm

The 3D random surface model gives the influence of the surface roughness to the emittance growth is much smaller than expected.

X.Z.He,C.X.Tang,W.H. Huang andY.Z.Lin, High Energy Phys. Nucl. Phys. 28, 1007 (2004). Z. Zhang and C. X. Tang, Phys. Rev. ST Accel. Beams 18, 053401 (2015).

Tsinghua Thomson scattering X-ray source (TTX): TTX-I is operating, TTX-II is under technical design.

The 50MeV Electron linac beam line of TTX

The maximum gradient of the gun is ~110MV/m and the bunch charge from a few pC to ~1nC.

✓ The acceleration phase is set at ~-90° to introduce an energy chirp

 \mathbf{M} Simulations show the emittance can be preserved when compression factor C < 3

A 4-dipole chicane has been installed after the linac

 \checkmark The bend angle can be varied up to ~15°.

The combination of ballistic bunching and magnetic compression enable us to generate ultrashort (rms<20fs) and high-intensity (~10kA) electron beam.</p>

Emittance optimization of the TTX linac

QE map of the cathode area

Construction of the second second

Emittance measurement and optimization

Quad-scan technique to measure the beam emittance

Emittance optimization results for beam charge 200pC and 500pC

The 20TW 800nm laser pulse interacted with the electron beam at TTX

Electron r Beam

The laser is focused by a parabolic ron mirror with 4mm hole in center m

Photon flux of TTX-I

NIM A 608 (2009), NIM A637(2011), RSI 84, 053301(2013)

Photon yield measurements with an MCP

Reconstruct the spectra of scattered X-rays by the attenuation curve over silicon foils

TTX-II with LESR and Optical Cavity

Nonlinear longitudinal space charge oscillation (NSCO)

,

$$\partial_t \Delta \gamma + c \frac{\Delta \gamma}{\gamma^3} \partial_z \Delta \gamma = -\frac{eE}{mc}$$

$$\partial_z E = -\frac{en}{\epsilon_0},$$

$$\partial_t n + c \partial_z n \frac{\Delta \gamma}{\gamma^3} = 0,$$

where the three unknown functions n(z,t), $\Delta \gamma(z,t)$ and E(z,t) describe the electronic density, the deviation from the reference energy and the longitudinal space-charge field, respectively

The initial electron density distribution

$$n(z, 0) = n_0(1 + 2b\cos(kz))$$

$$\omega_{p} = \sqrt{e^{2}n_{0}/m\epsilon_{0}\gamma^{3}}$$
$$T_{p} = 2\pi/\omega_{p}$$
$$\omega_{p3D} = \frac{2D}{1+2D}\omega_{p}$$
$$D = k\sigma_{x}/\gamma < 1$$

P. Musumeci et al., PRL 106, 184801 (2011) P. Musumeci et al., PRST-AB 16, 100701 (2013)

Demonstration of NSCO at TTX beam line

Normalized Intensity

0.5

0

100

200

t (ps)

150

50

0

-4

-3

-2

 $\widehat{\{\P\}}_{I}$ 100

Experiment

300

y (pixel)

400

500

y (pixel)

THz Autocorrelation Measurement

The electron bunch trains are used to generate THz radiation by CTR and the spectra are solved through the autocorrelation in the interferometer.

Tunable bunch train spacing and the frequency tuning of THz radiation

The bunch train spacing can be controlled by the velocity bunching of the RF gun and the accelerator, or by the magnetic compression.

Magnet

phase of the gun

PRL 116, 18, 2016

The photo-injector for SXFEL in Shanghai

Summary

- NC Photocathode rf guns have been developed, the gradient on cathode is about 120MV/m, and around 1um, 0.5um emittance can be got with the gun at charge of 500pC and 200pC.
- A 50 MeV linac has been running for ICS x-ray, THz radiation and other applications.
- New projects with high brightness electron linacs are under construction, such as gamma ray source XGLS and the photo injector of SXFEL.

Thanks!