28TH LINEAR ACCELERATOR CONFERENCE

East Lansing, MI USA **25-30 September**

Worldwide Direction on Nuclear Science and Application

Thomas Glasmacher Michigan State University

LINAC 16 28th Linear Accelerator Conference East Lansing, MI, USA 25-30 September 2016

21st Century Nuclear Science Probing nuclear matter in all forms and exploring applications

Nuclear Scientists Articulate Accelerator Needs Based on Science Drivers

1996

- NuPECC working on the next long range plan now, town meetings coming up. 2010 LRP report recommended many LINAC projects
 - FAIR, SPIRAL2, HIE-ISOLDE, SPES, Superconducting LINAC for superheavy element at GSI, Future facilities: EURISOL, ISOL@MYRRHA
- Canadian Five-Year Plan 2017-2021 Recommendations
 - TRIUMF ISAC ARIEL, SNOLAB, ATLAS, T2K
- LINAC plans in Japan, South Korea, China, ...
- US –Long Range Plan published in 2015
 - 12 GeV, FRIB, EIC

2007

2002

2015

 Science drives machine development ↔ Machine capability drives scientific discoveries

Machine capability drives discoveries: New Isotope Discoveries Facilitated by Accelerators

Thoennessen and Sherrill, Nature 473 (2011) 25 www.nscl.msu.edu/~thoennes/isotopes/

Electron Ion Collider Physics Program

Exploration and 3D mapping of nucleons in terms of quarks and gluons

- How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?
- What is the role of the orbital motion of sea quarks and gluons in building the nucleon spin?
- Where does the saturation of gluon densities set in?
- How does the nuclear environment affect the distribution of quarks and gluons
 T. Glasmacher, LINAC 2016, Slide 5

Electron Ion Collider (U.S. version)

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
 ✓ e-beam 3-10(20) GeV
 ✓ Luminosity L_{ep} ~ 10³³⁻³⁴ cm⁻²sec⁻¹ 100-1000 times HERA
- ✓ 20-~100 (140) GeV variable CoM

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Luminosity per nucleon same as e-p
- ✓ Variable center of mass energy

First polarized electron-proton/light ion and electron-Nucleus collider

US-Based EIC Proposals

eRHIC Baseline Design at Brookhaven National Laboratory

• Low-risk luminosity ~ 5-9 × 10^{32} cm⁻² s⁻¹

T. Glasmacher, LINAC 2016, Slide 8

arXiv:1409.1633

JLEIC Baseline Design at Jefferson Laboratory

Features:

- Collider ring circumference: ~2100 m
- Electron collider ring and transfer lines : PEP-II magnets, RF (476 MHz) and vacuum chambers
 arXiv:1209.0757 arXiv:1504.07961
- Ion collider ring: super-ferric magnets (3T)
- Booster ring: super-ferric magnets
- SRF ion linac

 Low-risk luminosity ~ 5-10 × 10³³ cm⁻² s⁻¹ √s ~ 20-65 GeV (100 GeV p↑)

Conceptual Design for a Polarized Medium Energy

lectron-lon Collider

Goals:

- Balance of civil construction versus magnet costs and risks
- Aim overall for low technical risks

What is the Nature of Dense Matter?

- What is the equation of state for neutron star matter
- Transition from nuclei to nuclear pasta
- What is its effect on isolated neutron stars, thermonuclear bursts, superbursts, neutron star mergers, and supernova observables?
- How can we address the question using accreting neutron star observations, Advanced LIGO results and FRIB experiments?

T. Glasmacher, LINAC 2016, Slide 10

What are the Nuclear Reactions that Drive Stars and Stellar Explosions?

- Use observational data to infer conditions at the site
- Accurate modeling requires
 - that we make the same isotopes that participate in astrophysical environments
 - reproduce the nuclear reactions that occur in those environments
- The hard part is that nature produces isotopes in environments like the r-process with T > 10⁹ K, ρ_{neutron} ≈ 10²⁰⁻²⁸ cm⁻³

What is the Origin of the Elements?

- What nuclear processes contribute to the origin of elements
- How did the chemical composition of the universe evolve?

Big Bang – Li Problem – what is primordial abundance? Early Stars – dynamic nucleosynthesis – how are C and O formed? Quiescent burning and seed material – what are burning and ignition conditions r-process, s-process, p-process, i-process and the origin of the heavy materials Weak interaction and neutrino physics in Big Bang, core collapse, and dense objects T. Glasmacher, LINAC 2016, Slide 12

What is the Nature of the Nuclear Force that Binds Protons and Neutrons?

- Theory Road Map comprehensive description of the atomic nucleus
 - Ab initio models study of neutron-rich, light nuclei helps determine force to use in models (measurement of sensitive properties for N = 14,16 nuclei)
 - Configuration-interaction theory; study of shell and effective interactions (study of key nuclei such as ⁵⁴Ca, ⁶⁰Ca)
 - The universal energy density functional (DFT) – determine parameters (broad view of mass surface, BE(2)s, BE(4)s, fission barrier surface, etc.)
 - The role of the continuum and reactions and decays of nuclei (halo studies up to A ~100)
- IMPORTANT: Understand and select the most sensitive measurements (role for theory)

Fast, Stopped, and Reaccelerated Rare Isotope Beams Afford Different Probes

Fast beams (>100 MeV/u)

 Farthest reach from stability, nuclear structure, limits of existence, EOS of nuclear matter

Stopped beams (0-100 keV)

Precision experiments – masses, moments, symmetries

Reaccelerated beams (0.2-20 MeV/u)

- Detailed nuclear structure studies, high-spin studies
- Astrophysical reaction rates

Accelerators – Drivers to Initiate the Production of Rare Isotopes

- The particle accelerator used for production is often called the "driver" accelerator
- Technologies
 - Cyclotron (NSCL, GANIL, TRIUMF (protons), RIKEN RIBF (heavy ions)
 - Synchroton (GSI, FAIR GSI)
 - LINAC (LINear ACcelerator) (ATLAS ANL, SPIRAL2, FRIB, RAON, HIAF)
- Features
 - Maximum Energy (e.g. FRIB will have 200 MeV/u uranium ions)
 - Particle type (e.g. TRIUMF cyclotron accelerates hydrogen, hence is used for spallation)
 - Beam Intensity (1 pµA = 6.25×10^{12} /s from 1 W = 6.25×10^{18} eV/s)
 - Power = Beam Intensity x Beam Energy = pµA x Beam Energy (in GeV)
 » Note
 - 400 kW protons at 1 GeV beam energy is 400 pµA (or 2.4x10¹⁵ protons/s)
 - 400 kW protons at 50 GeV beam energy is 8 pµA (or 4.8x10¹³ protons/s)

Rare Isotope Beams Facilities Based on Accelerators

Rare Isotopes Complementary Rare Isotope Production Methods

Isotope Separation Online (ISOL) – Light beam breaks up heavy target

Rare Isotopes Complementary Rare Isotope Production Methods

Isotope Separation Online (ISOL) – Light beam breaks up heavy target

In-flight Production – Heavy beam interacts with light target

In-flight Isotope Production Scheme

• Projectile fragmentation or fission (Coulomb breakup, transfer, ...)

- Kinematic focusing of rare isotope beam
- To produce a key nucleus like ¹²²Zr the production cross section (from ¹³⁶Xe) is estimated to be 2x10⁻¹⁸ b (2 attobarns, 2x10⁻⁴⁶ m²)
- Probability 1 in 10¹⁸: One ¹²²Zr for each 10^{18 136}Xe projectiles
- With a ¹³⁶Xe beam of 8x10¹³ ion/s (400 kW at 200 MeV/u) a few atoms per week (10⁵ s) can be made and studied

Example: In-Flight Production of ⁷⁸Ni at NSCL

D.J. Morrissey, B.M. Sherrill, Philos. Trans. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci. 356 (1998) 1985.

Facility for Antiproton and Ion Research at GSI in Germany under Construction

Beams at 1.5 GeV/u 10¹²/s Uranium SIS100/30 p-LINAC Research SIS18 Compressed matter UNILAC • Rare isotopes CBM Rare Isotope Antiproton HESR **Production Target** Plasma Super-FRS Atomic physics Antiproton Completion of the first stages Production Target Plasma Physics are planned around 2018 Atomic Physics resp LAIR FAIR NESR www.fair-center.de/index.php?id=1

2014-04-05 17:45 CE

uuu.fair-senter.et

High Intensity Heavy Ion Accelerator Facility (HIAF) in China being Designed and R&D

RAON Accelerator In South Korea's RISP Project

www.risp.re.kr/eng/orginfo/intro_project.do

RI Beam Factory (RIBF) at RIKEN in Japan

www.nishina.riken.jp/RIBF/

Intense heavy ion beams (up to U) up to 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS In operation since 2007

ISAC and ARIEL at TRIUMF in Canada

www.triumf.ca/research/research-facilities/isac-facilities-for-rare-isotope-beams

HIE-ISOLDE Facility at CERN

- ISOLDE can now run experiments at up to 5.5 MeV/u
- First experiment in September
- By Spring 2018 four cryomodules expected with energy up to 10 MeV/u

SPIRAL2 at **GANIL** in France

pro.ganil-spiral2.eu/spiral2

Facility for Rare Isotope Beams at MSU under Construction

Summary

- Particle accelerators are key to realizing nuclear science discovery potential
 - Machine capability drives scientific discoveries ↔ Science drives machine development

- Vibrant world-wide effort
- Major facilities under construction in Asia, Europe and North America will enable new discoveries
- I hope you enjoyed LINAC 16 and hope to see you at the FRIB tour this afternoon