Intense Beam Production of HCIs by the SC-ECRIS SECRAL for heavy ion Linacs

L Sun

Institute of Modern Physics, CAS, 730000, Lanzhou, China
Outline

- High Charge State Ion Sources
- Intense HCl Beams Production with SECRAL
 - \(\sim \text{emA} \) HCl beams
 - Metallic ion beams
 - Beam quality
- SECRAL II
- Scope of 4th G. ECRIS
Heavy ion Linac inquires ion sources of highly charged ions and intense beams

- Developing intense highly charged ion source is both performance-effective and cost-effective.
HCI Sources

Electron Beam Ion Source

\[C^+ = 3.36 \times 10^{11} I_e L_e \]

- Easily produces high intensity low duty factor HCI beams
- Very high charge state ions (from EBITs):
 - SuperEBIT (LLNL) \(\rightarrow \) \(~100\ U^{90+}\) ions/s
 - Tokyo EBIT \(\rightarrow \) Bi^{81+}
- Narrow charge state distribution, peaked on interested charge state
- Beam production of any species and intensity independent of species
- Low background contamination (charge breeder)
- Fast beam species switching (\(~1\) second)

Electron Cyclotron Resonance Ion Source

\[
I_i^q = \frac{1}{2} \frac{n_i^q q e V_{ex}}{\tau_i^q} \propto \omega_{ecr}^2
\]

- Irreplaceable machine for CW and high duty factor highly charged ion beams
- Long term stability reliability
- No life span issue
- Technology and physics advancing
ECRIS: as HCl beam injectors

World wide ECRISs and Applications
ECRIS: State of the Art

Cyclotrons | NC Linacs | SRF Linacs

10 eμA — 100 eμA — 1 eμA

Beam Intensity (eμA)

Ion Source Generation

6.4~18 GHz 18~28 GHz 40~60 GHz
ECRIS: as HCl beam injectors

MSU FRIB $^{233+} + ^{234+}$ 13 μA/ CW

RIKEN RIBF $^{235+}$ 15 μA/ CW

GSI FAIR: intense HCl uranium beam

1.0 emA $q/A=1/3$ and intense heavy ion beams of $q/A=1/6\sim1/7$ (optional)

Worldwide needs…
HCI Beam Production: HIRFL Introduction

- **SSC (K=450)**
- **CSR (K=69)**
- **SFC (K=69)**
- **ECR Area**
- **Existing HIRFL**

- **SSC-Linac**
 - ~1 MeV/u \(U^{37+} \)

- **CSR-Linac**
 - 7 MeV/u \(U^{37+} \)

- **RIBLL1**
- **RIBLL2**

- **CSRm**
 - 1000 AMeV (H.I.), \(\leq 2.8 \text{ GeV} \) (p)
ECRIS:
- Intense heavy ion beams
 - \(A > 40 \)
- High charge states
 - \(\text{Ni}^{19+}, \text{Bi}^{36+}, \text{U}^{37+} \ldots \)

Main parameters of SSC-Linac

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed ion</td>
<td>(\text{U}^{34+})</td>
</tr>
<tr>
<td>Preferred ion</td>
<td>(\text{U}^{37+})</td>
</tr>
<tr>
<td>RFQ</td>
<td>4-rod</td>
</tr>
<tr>
<td>Frequency</td>
<td>53.667 MHz</td>
</tr>
<tr>
<td>Input energy</td>
<td>3.728 keV/u</td>
</tr>
<tr>
<td>Output energy</td>
<td>143 keV/u</td>
</tr>
<tr>
<td>Inter-electrode voltage</td>
<td>70 kV</td>
</tr>
<tr>
<td>RF power</td>
<td>35 kW</td>
</tr>
<tr>
<td>Max. current</td>
<td>0.5 emA</td>
</tr>
<tr>
<td>IH-DTL</td>
<td>KONUS</td>
</tr>
<tr>
<td>Frequency</td>
<td>53.667 MHz</td>
</tr>
<tr>
<td>Input energy</td>
<td>0.143 MeV/u</td>
</tr>
<tr>
<td>Output energy</td>
<td>1.025 MeV/u</td>
</tr>
</tbody>
</table>
HCI Beam Production: HCI ECRISs at IMP

HCI ECRIS Family @ IMP

LECR1 1990-1995

LECR2 1996-1999

LECR3 1999-2002

LAPECR2 2003-2006

LAPECR3 2009-2012

LECR4 2010-2014

SECERAL 2002-2005

- Room temperature ECRIS
- Permanent magnet ECRIS
- Evaporative cooling ECRIS
- SC-ECRIS
HCI Beam Production: SECRAL Design

SECRAL magnet
Unique Design with Reversed structure

Advantages
- Lower/simpler interaction forces
- Compact magnet size and cryostat
- Simpler fabrication and lower cost
- Low stray field

SECRAL Structure
- Sextupole Coil
- Extract. Solenoid
- Middle Solenoid
- Inject. Solenoid

Conventional Structure
- Sextupole Coil
- Injection Solenoid
- Middle Solenoid
- Inject. Solenoid
HCI Beam Production: SECRAL Specs.

SECRAL ion source (since 2005)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SECRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{rf} (GHz)</td>
<td>18-24</td>
</tr>
<tr>
<td>Microwave power (kW)</td>
<td>3 kW-18 GHz, 7 kW-24 GHz</td>
</tr>
<tr>
<td>Axial Field Peaks (T)</td>
<td>3.7 (Inj.), 2.2 (Ext.)</td>
</tr>
<tr>
<td>Mirror Length (mm)</td>
<td>420</td>
</tr>
<tr>
<td>No. of Axial SNs</td>
<td>3</td>
</tr>
<tr>
<td>B_r at Chamber Inner Wall (T)</td>
<td>1.7/ 1.83</td>
</tr>
<tr>
<td>Coldmass Length (mm)</td>
<td>~810</td>
</tr>
<tr>
<td>SC-material</td>
<td>NbTi</td>
</tr>
<tr>
<td>Magnet Cooling</td>
<td>LHe bathing</td>
</tr>
<tr>
<td>Warm bore ID (mm)</td>
<td>140.0</td>
</tr>
<tr>
<td>Chamber ID (mm)</td>
<td>116.0/120.5</td>
</tr>
<tr>
<td>4.2 K cooling power with external recondenser (W)</td>
<td>~1.5</td>
</tr>
</tbody>
</table>
HCI Beam Production: SECRAL Status

- Averagely 7,000 hours beam time from all ECRISs
- Total beam time of SECRAL up to 25,000 hours as of summer 2016
HCI Beam Production: SECERAL Status

Beam List for HIRFL

Beams Delivered for HIRFL

Beams Available

- *Lanthanide series*
 - La
 - Ce
 - Pr
 - Nd
 - Pm
 - Sm
 - Eu
 - Gd
 - Tb
 - Dy
 - Ho
 - Er
 - Tm
 - Yb

- *Actinide series*
 - Ac
 - Th
 - Pa
 - U
 - Np
 - Pu
 - Am
 - Cm
 - Bk
 - Cf
 - Es
 - Fm
 - Md
 - No

L. Sun, LINAC’16, East Lansing 14
HCl Beam Production: SECRAL Status

High Charge State Ar Beams with SECRAL

- 18 GHz test
- Dual WG of 18 GHz with $P = 3.2$ kW
- Sufficient magnetic confinement
HCI Beam Production: SECRAL Status

High Charge State Ar Beams with SECRAL

- 24 GHz + 18 GHz
- Frequency effect
- $P_{\text{max}} = 5$ kW

Charge State

Argon Beam Intensity (euA)
HCI Beam Production: SECRAL Status

High Charge State Ar Beams with SECRAL

- New microwave coupling mode
- Better cooling
- $P_{\text{max}} = 7 \text{ kW}$
Better microwave coupling efficiency
Higher ECRH efficiency in terms of HCI production
Recent test of tapered waveguide Ø20 mm with VENUS/LBNL gave very promising performance improvement, see D. Xie, THAO01, ECRIS’16

*Based on Ø20 mm TE$_{01}$

L. Sun, R.S.I. 87, 02A707 (2016)
HCl Beam Production: Metallic ion beams

- **Resister oven**
 - (500°C - 1500°C)
 - Matured technique
 - Low loading capacity
 - ~100 euA metal ion beams

- **Cartridge Heater oven**
 - (100°C - 700°C)
 - Allows precise control
 - High loading capacity
 - Good for emA metal ion beams

- **High Temp. oven**
 - (500°C - 1900°C)
 - For ion beams of very refractory metals, i.e. U
 - High loading capacity
 - Limited operation life span
 - Under R&D phase
HCl Beam Production: Metallic ion beams

Ca
- Ca^{11+}: 710 euA, 2.4 kW@24 GHz
- Ca^{11+}: 2.4 kW@24 GHz

Bi
- Bi^{31+}: 680 euA, 5 kW@24 GHz
- Bi^{31+}: 5 kW@24 GHz

Table

<table>
<thead>
<tr>
<th>Q</th>
<th>I (euA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>710</td>
</tr>
<tr>
<td>31</td>
<td>680</td>
</tr>
<tr>
<td>32</td>
<td>610</td>
</tr>
<tr>
<td>33</td>
<td>500</td>
</tr>
<tr>
<td>34</td>
<td>424</td>
</tr>
<tr>
<td>36</td>
<td>320</td>
</tr>
<tr>
<td>38</td>
<td>160</td>
</tr>
<tr>
<td>41</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>49</td>
</tr>
<tr>
<td>48</td>
<td>16.6</td>
</tr>
<tr>
<td>50</td>
<td>10.7</td>
</tr>
<tr>
<td>51</td>
<td>7</td>
</tr>
<tr>
<td>54</td>
<td>3.4</td>
</tr>
<tr>
<td>11</td>
<td>710</td>
</tr>
<tr>
<td>12</td>
<td>670</td>
</tr>
<tr>
<td>13</td>
<td>480</td>
</tr>
<tr>
<td>14</td>
<td>270</td>
</tr>
</tbody>
</table>

L. Sun, R.S.I. 87, 02A707 (2016)
HCI Beam Production: *Refractory metallic ion beams*

For more reliable intense U ion beams:
- Resister HTO oven
- Inductive heating oven
- Electron beam heating oven
- Laser ablation tech.

Sputtering method for intense U beams

![Image of U target]
HCL Beam Production: **Metallic ion beams**

- **Gaseous beams:**
 - Fairly reasonable stabilities

- **Metal beams:**
 - Source conditioning
 - Oven stability
 - Material dissipation
 - On-call tuning

Typically: 50~150 eμA

Bi$^{31+}$ stability $<\pm 3\%$
HCl Beam Production: Intense HCl beam quality

Figure: Emittance vs. beam intensity

- **Bi^{31+}**
 - Normalized rms ~0.2 π.mm.mrad

Graph:
- X-axis: Bi^{31+} intensity (eA)
- Y-axis: Normalized RMS Emittance (π.mm)
- Data points for 100 eμA Bi^{31+} and 600 eμA Bi^{31+}

Observations:
- Increasing emittance with intensity
- Peak emittance at ~500 eμA
Conclusions:

- Ion beams from high charge state ECRIS are transversely coupled.
- High order aberration mostly comes from sextupole component of ion source.
- High order aberration can be compensated.
SECRAL II: Magnet Design

<table>
<thead>
<tr>
<th>Parameters</th>
<th>SECRAL II</th>
<th>SECRAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_{rf} (GHz)</td>
<td>18-28</td>
<td>18-24</td>
</tr>
<tr>
<td>Axial Field Peaks (T)</td>
<td>3.7 (Inj.), 2.2 (Ext.)</td>
<td>3.7 (Inj.), 2.2 (Ext.)</td>
</tr>
<tr>
<td>Mirror Length (mm)</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>No. of Axial SNs</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>B_r at Chamber Inner Wall (T)</td>
<td>2.0</td>
<td>1.7/1.83</td>
</tr>
<tr>
<td>Coldmass Length (mm)</td>
<td>~810</td>
<td>~810</td>
</tr>
<tr>
<td>SC-material</td>
<td>NbTi</td>
<td>NbTi</td>
</tr>
<tr>
<td>Magnet Cooling</td>
<td>LHe bathing</td>
<td>LHe bathing</td>
</tr>
<tr>
<td>Warm bore ID (mm)</td>
<td>~142.0</td>
<td>140.0</td>
</tr>
<tr>
<td>Chamber ID (mm)</td>
<td>125.0</td>
<td>116.0/120.5</td>
</tr>
<tr>
<td>Dynamic cooling power (W)</td>
<td>~5</td>
<td>0</td>
</tr>
</tbody>
</table>
SECRAL II: Test Bench Layout

28 GHz

Ø32 mm TE_{01}

2013-2015
Beam Commissioning: Oxygen & Xenon

<table>
<thead>
<tr>
<th>Ion</th>
<th>$P_{28\text{ GHz}}$ (kW)</th>
<th>I_{drain} (emA)</th>
<th>I_q (emA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O^{6+}</td>
<td>4.5</td>
<td>20.0</td>
<td>5.4</td>
</tr>
<tr>
<td>O^{7+}</td>
<td>3.5</td>
<td>13.0</td>
<td>1.57</td>
</tr>
<tr>
<td>Xe^{27+}</td>
<td>3.5</td>
<td>8.0</td>
<td>0.51</td>
</tr>
</tbody>
</table>

- Total beam transmission efficiency is 84% for 1.8 emA O^{6+}/8.0 emA drain current, and 86% for 450 euA Xe^{27+}/7.0 emA drain current
- ~10 days conditioning to produce 510 euA Xe^{27+}
Scope: Future development

BRing: Booster ring
Circumference: 530 m
Rigidity: 34 Tm
Beam accumulation
Beam cooling
Beam acceleration
E=0.8 GeV/u,
I= 1.5×10^{11} ppp (238U$^{35+}$)

SRing: Spectrometer ring
Circumference: 290 m
Rigidity: 13 Tm
Electron/Stochastic cooling
Two TOF detectors
Four operation modes

MRing: Figure “8” ring
Circumference: 268 m
Rigidity: 13 Tm
Ion-ion merging

iLinac: Superconducting linac
Length: 100 m
Energy: 17 MeV/u (238U$^{35+}$)
Intensity: 30 pμA

SURF: 45 GHz ECRIS
Energy: 14 keV/u (238U$^{35+}$)
Intensity: 20 pμA CW/50 pμA pulsed

HIAF
2017-2023
Scope: Future development

Challenges: (2015—2019)
- Nb$_3$Sn sextupole magnet
- 45 GHz microwave coupling
- >20 emA beam extraction and transmission
- Cryogenic solution

H. W. Zhao, MOBO01, ECRIS’16
Summary

- State of the art ECRISs can produce HCl beams of emA currents
- High performance SC-ECR ion sources are reproduceable
- Challenges lie in the production of high current, high quality reliable metallic ion beams
- 4th generation ECRIS is under development for next generation heavy ion Linacs
Thanks for your attention
谢谢！