UPGRADE OF THE KLYSTRON MODULATOR OF THE L-BAND ELECTRON LINAC AT OSAKA UNIVERSITY FOR HIGHER STABILITY

K. Furukawa, G. Isoyama (Osaka University) A. Tokuchi (Pulsed Power Japan Laboratory Ltd.) R. Kato (KEK) K. Kawase (Hiroshima University)

-INTRODUCTION

- 40MeV L-band electron linac at the Osaka University; used for
- Pulse radiolysis (time range : from nanoseconds down to sub-picoseconds)
- The development and applications of THz-FEL
$>$ Highly intense and stable FEL beam requires highly stable electron beam.
$>$ The energy stability of the electron beam is dependent on stability of high power RF pulses generated with a klystron.
\square Klystron modulator
- Maximum specifications : $25 \mathrm{kV}, 6 \mathrm{kA}$
- Electric charge accumulated in the PFN to a high voltage is discharged using a high-speed switch, and the generated pulse is supplied to the klystron via a stepup transformer, and then a high power RF pulse is generated.

\square Development for higher stability
$>$ Two-step charging system for PFN using two parallel resonant lines
$>$ Solid-state switch using SI-thyristors used in place of a thyratron

Circuit diagram of the klystron modulator

CHARGING SYSTEM

- Two-step charging system for PFN
- The charging current of the inverter unit is determined by the inductor L and capacitor C of the resonance line.

$$
I=\sqrt{\frac{C}{L}} V \equiv \frac{V}{Z_{0}}, \quad f=\frac{1}{2 \pi \sqrt{L C}}
$$

- A high impedance charging line was added in parallel with main resonance line.
$>$ The PFN is first charged via both resonance line and, when the PFN voltage approaches a setting value, the IGBT switch is turned off, so that the fine step charging via the sub line only is implemented.
-Conventional resonance unit : $\mathrm{C}=1.09 \mu \mathrm{~F}, \mathrm{~L}=12.3 \mu \mathrm{H}$
- New resonance unit : $\mathrm{C}=126 \mathrm{nF}, \mathrm{L}=105 \mu \mathrm{H}$
$>$ Fast charging mode : $\mathrm{Z}=1.5 \Omega, \mathrm{I}=332 \mathrm{~A}$
$>$ Fine charging mode: $\mathrm{Z}=14.4 \Omega, \mathrm{I}=34.7 \mathrm{~A}$
\square New resonance unit
- Upper plate : A pair of reactors and capacitors
$>$ Reactors : adjusted by the number of the windings and air gap
- Capacitors: 10 nF of 12 parallel
- Lower plate
$>$ Two IGBTs for the switch
$>$ Heat-sink cooled by the fan
$>$ Circuits board for driving IGBTs

New Resonance unit

Wave form of the charging voltage

SOLID-STATE SWITCH

\square Static induction thyristor

- Manufacture's specifications
$>$ Blocking voltage : 3.2 kV
$>$ Average current: 50 A
- Specifications after performance test
> Restriction voltage : 2.5 kV
(due to the leak current)
> Pulse current : 1 kA @ $10 \mu \mathrm{~S}$
\square Solid-State Switch
-The total amount of the thyristors : 60
>10 series (to tolerate 25 kA)
>6 parallel (to flow 6 kA)
\bullet Gate board
Including trigger and error detection circuits Power supply
$5 \mathrm{~V}, 100 \mathrm{kHz}$ isolated DC-DC converters
Trigger signals are sent via optical links.
- Cooling

A Air flow of Cooling fan: $7.35 \times 2 \mathrm{~m}^{3} / \mathrm{min}$
$>$ Heat resistance of heat-sink: $0.45 \mathrm{~K} / \mathrm{W}$
> Temperature rise at $10 \mathrm{~Hz}: 4^{\circ} \mathrm{C}$

- By changing wiring 20 series and 3 parallel, the solid-state switch can deal with the 50 kV 3 kA driving of the general klystron modulator of the S-band linac.

Outline of the control system

SI thyristor

Solid-state switch using SI thyristors

Outline drawing of the Solid-state switch

MEASUREMENT

- To evaluate the performance of the solid-state switch and the charging system, we measured the stabilities of the voltage applied to the klystron.
- Measurement conditions
$>$ The charging voltage of the PFN : 20 kV
$>$ Repetition : 10 Hz
$>$ Differential amplifier: DA1855A, Teledyne Lecroy
$>$ A low input noise level and high sensitivity enough to measure small fluctuations.
- Fluctuation of the klystron voltage
$>$ The expansion waveform is overlaid 532 pulses.
$>$ The standard deviation of the expansion waveforms: 0.00078 \% (7.8 ppm)

Voltage and current waveforms of klystron

CONCLUSION

- We upgraded the charging system and developed the solidstate switch for higher stability of the klystron modulator of the L-band linac.
- The new charging system uses a two-step charging scheme for finer charging steps near the setting with the single inverter power supply.
- The solid state switch with the maximum specifications of 25 kV and 6 kA were developed using 60 SI thyristors, ten of which were connected in series with six such series connected in parallel.
$>$ The accuracy and precision of the klystron voltage were measured to be 7.8 ppm , and it is used without any serious problems in the regular operation of the linac.

