

Redesign of the End Group in the 3.9 GHz LCLS-II Cavity* A. Lunin, I. Gonin, T. Khabiboulline, N. Solyak, Fermi National Accelerator Laboratory, Batavia, USA

Introduction

a)

A continuous operation regime of the 3.9 GHz LCSL-II accelerating structure at the maximum gradient of 14.9 MV/m sets an extra caution on possible overheating of HOM couplers feedthroughs. The HOM feedthrough coupling antenna is made of a solid Niobium, which does not produce significant amount of RF losses until its temperature is keeping below critical, but it may initiate a thermal runaway process and end up by a cavity quench due to a leak of an operating mode or a resonant excitation of the cavity HOM spectrum. In order to avoid such a scenario, one has to minimize the antenna RF heating by using smaller antenna tip and increasing the size of the f-part snag.

Modifications of the HOM coupler for the 3.9 GHz cavity: a) XFEL design and b) LCLS-II design.

- In the tuned HOM coupler, the feedthrough antenna with new tip has a higher local G-factor of 1.7x10⁹, comparing to the 3.2x10⁸ G-factor of the original design.
- It is equivalent to a reduction by a factor of five of associated surface RF losses, which makes new HOM coupler suitable for the CW operation

Dipole HOMs Spectrum in the End Group

#1				Dipole HOMs of the XFEL 3.9 GHz Cavity				#1
#2			#	Freq. [GHz]	Q _{ext}	(R/Q) _x [Ω/mm²]	(R/Q) _y [Ω/mm²]	#2
#3			1	3.992	3.6e4	0.06	0.26	#3
			2	4.047	8.0e4	0.02	5e-3	
#4			3	4.059	2.5e5	5e-3	0.34	#4
			4	4.136	5.9e3	1.0	0.96	
#5		60001	5	4.135	4.9e3	7.3	3.0	
			6	4.150	3.3e5	1.2	1.6	
#6								

- It is difficult to tune the notch filter in a close proximity of dipole HOMs
- Number of nearby dipole HOMs is reduced to four in the LCLS-II 3.9 GHz cavity
- The frequency of the closest dipole mode is shifted up by 100 MHz comparing to the original XFEL design.

MOPLR007

New design of the 3.9 GHz cavity **End Group**

Operated by Fermi Research <u>Alliance</u>, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy

The LCLS-II design with a reduced beam pipe aperture has a less influence of nearby dipole modes and, thus, ensures an easy tuning of the sensitive HOM coupler notch filter.

Conclusions

The redesign of the 3.9 GHz cavity End Group is completed. Reduced beam pipe aperture simplifies the HOM coupler notch filter tuning, while modifications of the HOM coupler f-part and the antenna reduce RF losses in the HOM feedthrough making it suitable for CW operation of the LCLS-II linac.

Fermiab U.S. DEPARTMENT OF ENERGY

