
TOWARDS USER-DEFINED WEB APPLICATIONS
IN ACCELERATOR LABS*

D. Liu†, Facility for Rare Isotope Beam, East Lansing, USA

Abstract
Most scientists and engineers in accelerator labs under-

stand the basics of data types and data structures. They
have in-depth knowledge about accelerator physics and
other engineering domains. Some even develop software
applications by themselves. However, they are not web ap-
plication developers, and very few of them can implement
web applications that support multiple users and data stor-
age. In the approach of user-defined web applications, a
user defines her/his own web application, test and use it
first before sharing it to other users. It saves the communi-
cation efforts between developers and users, reduces the
time from application design to production. Most im-
portantly, users become the owner of the application and
naturally the owner of the data that the application collects
and produces. This will largely improve an application's
quality and user experience.

SCIENTISTS ARE NOT DEVELOPERS
Most scientists and engineers in large scientific research

labs are advanced computer users. They use general office
software every day, and they need to use specific applica-
tions for their research and work. Some of them even de-
velop software by themselves because available commer-
cial software sometime does not satisfy their special needs.

Some applications developed by scientists are well
known and used by the community. Some of such applica-
tions were released with an open-source licence, while
some were provided with just the binaries. The application
authors have to spend their own time to provide limited
support. Reusing such software as libraries or services in a
new development often is difficult due to intellectual prop-
erty issues and source-availability issues. For the sake of
the research community, there should be a platform to the
scientists to easily share and manage their applications.
The platform should lower the burden of software authors
for managing and supporting users.

While some scientists have successfully delivered sin-
gle-user desktop applications, very few have the technical
skills to develop multi-user web applications. It is because
this requires the software author to use multiple program-
ming languages, develop both client- and service-side soft-
ware, and know how to deal with aspects like security, data
storage, and application protocols like HTTP.

USER-DEFINED WEB APPLICATIONS
In Section 1, we discussed the two problems in scientific

application lifecycle:

1. difficulties to share and manage applications, and
2. difficulties to develop multi-user web applications.

In order to address these problems, we propose the ap-
proach of user-defined web application (UDWA).

What is a User-defined Web Application?
A web application has the following advantages com-

pared to a traditional desktop application:
 Supporting multiple concurrent users
 Easy to release and update on diverse operating sys-

tems
 Easy to share to other users across organizational and

geographical boundaries
Obviously, web applications help to address the first prob-
lem.

A user-defined web application is a data-centric web ap-
plication generated by a web platform from high-level user
defined specifications, and provides basic graphical user
interface (GUI) and application program interface (API).
Ideally, the platform provides an environment for users to
compose and test the application specifications including:
1. the structure and types of data that application users

will read and write, and
2. the data resources the application will consume.
The Epics process variable and other available UDWA
data API’s should be supported by the UDWA platform.

Minimal Requirements for Users
In order to use UDWA platform, and be able to define

the application specifications, a user needs to understand
 basic data types like string and number;
 basic data structure concepts, like an object with prop-

erties and values, and an array of basic types, arrays,
and objects;

 get and set the value of a Epics process variable; and
 read and update a resource via the HTTP protocol.

Technical Challenges
The first technical challenge to develop the UDWA plat-

form is to have a data storage service that is able to save
1. the application specifications and their change histo-

ries; and
2. data instances saved by an application.
Note that the data instances of an application can be col-
lected according to different data types and structures in
the changing application specification. This makes it ex-
tremely difficult to store the data instances in a relational
database, because the instances may require different data
schemas. The same difficult is for the changing application
specification if we want to save it in a database.

The second challenge is that the generated user inter-
faces of a piece of data can be rendered equivalently on

* This material is based upon work supported by the U.S. Department of
Energy Office of Science under Cooperative Agreement DESC0000661,
the State of Michigan and Michigan State University.
† liud@frib.msu.edu

Proceedings of LINAC2016, East Lansing, MI, USA THPRC032

3 Technology
3I Other Technology

ISBN 978-3-95450-169-4
843 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

both client and server sides. When a user composes an ap-
plication in the application builder on the client side, the
user should see the rendering result from specification.
When the application specification is saved on the server,
the server should render the same interface to the owner
who defines it, and other users the owner shared with.

Technical Enablers
The answer to the first challenge is schema-less data-

bases. With the development of NoSQL (not only SQL),
some new databases do not require predefined schemas for
the data to be saved and queried. MongoDB [1] is one of
such implementations where data with different structures
can be saved in the same collection that is like tables in
relational databased.

The answer to the second challenge is JavaScript librar-
ies that run on client and server sides. Node.js [2] is a Ja-
vaScript engine that runs on the server side and is able to
execute many JavaScript libraries with equivalent func-
tionalities as those running in browsers.

The Whole Picture
Figure 1 shows the major components of the UDWA

platform and their interactions. Both client and server sides
implement the model-view-controller patter.

Figure 1. The major components of UDWA platform.

PROGRESS AT FRIB
At FRIB, we have started to develop web application

platform where users can define their data and user inter-

faces for the data. The traveler application [3] was devel-
oped in the UDWA principle, and has been in operation for
about three years. The traveler application allows users to
design their data collection interface in a what-you-see-is-
what-you-get (WYSIWYG) way, and to release it by shar-
ing with other users and groups in the lab. Figure 2 shows
a screen shot of the WYSIWYG form builder. We plan to
develop a generic data store where users are able to define
their own data type and data structure, to track structure
and instance data changes, and to control the access to the
data.

Figure 2. The traveler form builder.

CONCLUSION
The UDWA approach will benefit both the application

users and the application developers in the aspects of user
experience and application quality. It will reduce the time
from application design to release, and therefore accelerate
the construction of scientific research facilities like FRIB.

REFERENCES
[1] MongoDB, https://docs.mongodb.com/manual/
[2] node.js, https://nodejs.org/en/docs/
[3] traveler, https://github.com/dongliu/traveler/

tree/FRIB

THPRC032 Proceedings of LINAC2016, East Lansing, MI, USA

ISBN 978-3-95450-169-4
844Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

3 Technology
3I Other Technology

