
RF-TRACK: BEAM TRACKING IN FIELD MAPS INCLUDING
SPACE-CHARGE EFFECTS. FEATURES AND BENCHMARKS

A. Latina, CERN, Geneva, Switzerland
Abstract

RF-Track is a novel tracking code developed at CERN
for the optimization of low-energy ion linacs in presence of
space-charge effects. RF-Track features great flexibility and
rapid simulation speed. It can transport beams of particles
with arbitrary mass and charge even mixed together, solving
fully relativistic equations of motion. It implements direct
space-charge effects in a physically consistent manner, using
parallel algorithms. It can simulate bunched beams as well
as continuous ones, and transport through conventional ele-
ments as well as through maps of oscillating radio-frequency
fields. RF-Track is written in optimized and parallel C++,
and it uses the scripting languages Octave and Python as
user interfaces. RF-Track has been tested successfully in
several cases. The main features of the code and the results
of its benchmark studies are presented in this paper.

INTRODUCTION

RF-Track was developed to optimize the design and beam
transport of the TULIP backward traveling-wave linac [1,2].
The main requirements were three: (1) being able to track
particles in backward-traveling radio-frequency (rf) field
maps; (2) being able to transport protons as well as light
ions in a fully relativistic regime (β-relativistic, in TULIP,
is ≈ 0.38); and (3) being able to dynamically tune the rf
parameters, like e.g. the rf input power, in order to perform
non-trivial optimizations of the linac’s transport efficiency.

Given the limited number of codes capable of tracking in
oscillating electric and magnetic field maps, the uncertainty
on how these codes would handle field maps of backward-
traveling structures, and the requirement of a dynamically
tunable rf input power, it was decided to develop a new ad
hoc tool, optimized and tailored for the TULIP project.

RF-Track fulfilled the requirements, and eventually grew
to become a general-purpose tracking code that excels for
its flexibility, accuracy, and simulation capabilities. Its main
features are:

• it is fully relativistic: doesn’t make any approximation
such as β � 1 or γ � 1;

• it can track particles of arbitrary mass and charge, even
in mixed-species beams;

• it implements direct space-charge interaction, comput-
ing both the electric and the magnetic fields acting
within the particles;

• it implements several integration algorithms: fast algo-
rithms for complex nonlinear optimizations, accurate-
but-slow ones for precise tracking;

• it is fast, fully benefiting from modern multi-core
CPUs;

• it is programmable, relying on powerful and expressive
scripting languages like Octave and Python for its user
interface.

The following sections will elucidate each of these points.

RF-TRACK INTERNALS
RF-Track has been developed in C++11, fully exploiting

the multi-thread capabilities offered by this language. Every
single algorithm in RF-Track has been designed to take full
advantage of modern multi-core CPUs.

In an effort aimed at making RF-Track aminimalistic code,
yet uncompromised in its scientific throughput, the devel-
opment has been focused on all physics-related algorithms,
relying on powerful and well-established numerical libraries
for all the rest. Two libraries were chosen to provide numer-
ical algorithms: GSL, the “Gnu Scientific Library”, which
offers a wide range of mathematical routines such as random
number generators, ODE integrators, linear algebra, and
more [3]; and FFTW, the “Fastest Fourier Transform in the
West”, probably the fastest opensource library to compute
discrete Fourier transforms ever written [4].
The hundreds of functions and routines that constitute

RF-Track are compiled into a single binary file dynamically
loadable from the two scripting languages: Octave [5] and
Python [6]. These powerful high-level languages are ideal
for numerical and scientific experimentations. They offer
a large number of off-the-shelf toolboxes to perform com-
plex numerical tasks: e.g., multidimensional optimizations,
nonlinear fits, complex data processing, etc. The acceler-
ator physics capabilities embedded in RF-Track, together
with these expressive and rich scientific languages, make
the simulation possibilities offered by RF-Track virtually
uncountable.
The interface between the internal C++ code and the

aforementioned scripting languages has been obtained using
SWIG [7]. A typical RF-Track script, in its Octave version,
looks like this:
% load the RF-Track library
RF_Track;

% setup the simulation, e.g. a transfer line TL and a beam B0
TL = setup_a_transferline();
B0 = setup_a_beam();

% track B0 through TL, and store the result as B1
B1 = TL.track(B0);

% inquire the final phase space
T1 = B1.get_phase_space("%x %xp %y %yp");

% use Octave’s plotting routines to display the results
plot(T1(:,1), T1(:,2), "*");
xlabel("x [mm]");
ylabel("x’ [mrad]");

As shown, RF-Track’s commands can be interleaved with
Octave keywords.

MOPRC016 Proceedings of LINAC2016, East Lansing, MI, USA

ISBN 978-3-95450-169-4
104Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

4 Beam Dynamics, Extreme Beams, Sources and Beam Related Technology
4A Beam Dynamics, Beam Simulations, Beam Transport

BEAM MODELS
Internally, RF-Track represents the beam as an ensemble

of macroparticles. It evolves the beam along the accelerator
solving the equations of motion according to two optional
beam models:

Beam Moving in Space
All particles lie on a thin sheet at the same longitudinal

position S; tracking is performed integrating the equations
of motion in dS: that is, S goes to S+ dS (typically, element-
by-element); each particle’s phase space is internally stored
as the six-dimensional vector:(

x, x ′, y, y′, t, Pz
)

where t is the proper time of each particle. This is available
to the user as type Bunch6d.

Beam Moving in Time
The particles coordinates are kept as a six-dimensional

snapshot taken at the same time t; tracking is performed
integrating the equations of motion in dt: that is, t goes to
t + dt; each particle’s phase space is internally stored as the
six-dimensional vector:(

X, Y, S, Px, Py, Pz

)
where X , Y , and S are the 3d spacial coordinates inside the
accelerator. One might notice that this beam model allows
to handle particles with Pz < 0 (moving backward) as well
as Pz = 0 (pure transverse motion). This is available to the
user as type Bunch6dT.

In both cases, for eachmacroparticle, RF-Track also stores:
m, the particle mass in MeV/c2; Q, the electric charge in
units of e; and N , the number of particles per macroparticle.
This allows RF-Track to simulate mixed-species beams as
well as zero-current particles (i.e. ideal witness particles:
that bear a charge, Q , 0, but bear no current, N = 0).
Great care has been given to granting the user the max-

imum flexibility in accessing the beam information. Both
the objects Bunch6d and Bunch6dT implement a method
called get_phase_space(), which allows to inquire the
phase space from many different viewpoints. This is shown
in the previous example already, where the string "%x %xp
%y %yp" was meant to have RF-Track return the beam’s
phase space as a matrix with 4 columns: x positions, x ′

angles, y positions, and y′ angles.
RF-Track doesn’t impose a specific convention, and other

%-identifiers include, for example: "%Px", "%Py", "%Pz",
the total momenta expressed in MeV/c ; "%Vx", "%Vy",
"%Vz", the velocities in units of the speed of light, c; "%E"
the total energy and "%K" the kinetic energy, both in MeV,
such that one can retrieve the beam information in great de-
tail and with a direct physical grip. The following example
shows how to access the beam information miming three
well-established accelerator codes:

% Accessing the phase space MAD-X’s style
T = B1.get_phase_space("%x %px %y %py %Z %pt");

% TRANSPORT’s style
T = B1.get_phase_space("%x %xp %y %yp %dt %d");

% PLACET’s style
T = B1.get_phase_space("%E %x %y %dt %xp %yp");

This follows the object-oriented paradigm of data encapsula-
tion: the user can access the full information in a transparent
and intuitive way, without needing to care about the internal
representation of the data.

INTEGRATION ALGORITHMS
Great care has been given to the routines for solving the

equations of motion. RF-Track offers more than a dozen
algorithms, that can be categorized in three groups:
1. “leapfrog”, a second-order integration method of sym-

plectic nature. It is extremely fast, although a large
number of integration steps is required to achieve great
accuracy;

2. a battery of 12 algorithms imported from GSL, which
offers a variety of low-level methods such as Runge-
Kutta and Bulirsch-Stoer routines, as well as higher-
level components for adaptive step-size control like
the Nordsieck method (accurate to the 12th order) [3].
These algorithms are identified by labels like “rk2”,
“rk4”, “rkf45”, “rk4imp”, “rk5imp”, “msadams”; “ms-
bdf”, etc. They are generally slow, but offer great accu-
racy;

3. “analytic” integration, where the equations of motion
are solved analytically assuming a constant field during
one integration step (e.g. for a particle in a constant
magnetic field, the 3d helical trajectory is calculated).
Very useful insights on how to integrate analytically
the equations of motion in a combined electric and
magnetic field were found in [8]. This method is the
most accurate among all methods, it is symplectic, and
it is reasonably fast.

The algorithms “leapfrog” and “analytic” are original
implementations in RF-Track; the others are imported from
GSL. The choice of integration algorithm can be made at
run-time, very easily, as shown in this example:
% load the fieldmap of an RFQ
RFQ = load_rfq_field_map();

% select the integration algorithm (see text)
RFQ.set_odeint_algorithm("analytic");

% tracks B0 in time, using time step dt = 1 mm/c
B1 = RFQ.track(B0, 1.0);

where a beam is transported through the field map of an
RFQ using the "analytic" integration algorithm.

SPACE-CHARGE
RF-Track solves the differential laws of magneto and

electro-statics to compute the electromagnetic forces act-
ing within the beam. It computes the full 3d electric and the
magnetic interaction using two independent methods:

Proceedings of LINAC2016, East Lansing, MI, USA MOPRC016

4 Beam Dynamics, Extreme Beams, Sources and Beam Related Technology
4A Beam Dynamics, Beam Simulations, Beam Transport

ISBN 978-3-95450-169-4
105 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

Particle-to-Particle
It computes the electromagnetic interaction between each

pair of particles, computing both the electric and the mag-
netic components of the force; it uses the Kahan summation
algorithm to provide a numerically-stable summation of
the forces; it is fully parallel, with complexity scaling as
O(n2

particles /nCPUs).

Cloud-in-Cell
Computes the electric and the magnetic fields solving the

Maxwell equations for the scalar and the vector potentials,
using a FFT method; it uses 3d integrated Green functions
for computing the scalar and the vector potentials, and 5th-
order derivatives to compute the fields (error O

(
h4
)
). It

can save the ~E and ~B field maps on disk and use them later
for fast tracking; it implements continuous beams using a
modified Green function; it is fully parallel, with complexity
scaling as O(nparticles · ngrid · log ngrid /nCPUs) computations.
Obviously this is much faster then the particle-to-particle
method.
It must be noted that no approximations such as “small

transverse velocities”, or ~B � ~E, or gaussian bunch distribu-
tion, are made. Furthermore, as these algorithms compute
also the B field, it can simulate beam-beam forces.

BENCHMARKS
RF-Track has been benchmarked against other codes in

a large range of cases, always finding excellent agreement.
We report here of three such cases.

ELENA Transfer Line
Antiprotons with kinetic energy Ekinetic=100 keV (βrel ≈

0.015), transported through a transfer line with 6 FODO
cells. The comparison against PTC shows perfect agreement
on a particle-to-particle level, showing that RF-Track and
PTC implement similar transfer maps for the most common
accelerator elements (see Fig. 1).

Figure 1: Antiprotons transported through a transfer line
with 6 FODO cells.

CERN’s 750 MHz RFQ
The final distribution matched with very good agreement

the results obtained using the code PATH. The plots show
the horizontal and longitudinal phase spaces (see Fig. 2).

-10

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x
’
[m

ra
d

]

x [mm]

100k particles

 5

 5.01

 5.02

 5.03

 5.04

 5.05

 5.06

 5.07

 5.08

-10 -5 0 5 10 15

K
 [

M
e

V
]

z [deg]

100k particles

Figure 2: Tracking of 100’000 particles in the field map of
the CERN’s 750 MHz RFQ.

Lead Ion Source for Linac 3
The distribution contains oxygen ions from O1+ to O8+,

and lead ions from Pb21+ to Pb36+. The plots show the exit
x-y plane for lead ions with charge state Q = 29+. Left-
hand and right-hand plots show the result without and with
space-charge, respectively. Excellent agreement has been
found against the original IBSimu simulations (see Fig. 3).

y
 [

m
m

]

x [mm]

-20

-10

0

10

20

30

-20 -10 0 10 20 30

y
 [

m
m

]

x [mm]

-20

-10

0

10

20

30

-30 -20 -10 0 10 20

Figure 3: Tracking of an IBSimu-generated input distribu-
tion through the complex field map of the CERN’s Linac 3
ion source.

TULIP Project
The results of the simulations obtained with RF-Track

in the context of the TULIP project are documented in [2]
(presented in this conference).

SUMMARY AND OUTLOOK
A new code with a great potential for a large range of appli-

cation has been created: RF-Track. It implements accurate
tracking and fast space-charge solvers. Future developments
foreseen include the simulation of electron cooling and indi-
rect space-charge. To receive further information, contact
the author.

ACKNOWLEDGMENTS
The author wishes to thank all those who have helped

performing the benchmarks, those who use RF-Track pro-
viding useful feedbacks, and those who have encouraged
its development: Alessandra Lombardi, Veliko Atanasov
Dimov, Stefano Benedetti, Marc Maintrot, Ville Toivanen,
Elias Metral, and Roberto Corsini.

REFERENCES
[1] A. Degiovanni et al., "Design of a Fast-Cycling High-Gradient

Rotating Linac for Protontherapy", in Proc. IPAC’13, paper
THPWA008.

MOPRC016 Proceedings of LINAC2016, East Lansing, MI, USA

ISBN 978-3-95450-169-4
106Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

4 Beam Dynamics, Extreme Beams, Sources and Beam Related Technology
4A Beam Dynamics, Beam Simulations, Beam Transport

[2] S. Benedetti et al., "Design of a 750 MHZ IH Structure for
Medial Applications", presented at LINAC’16, East Lansing,
MI, USA, paper MOPLR049, this conference.

[3] M. Galassi et al., GNU Scientific Library Reference Man-
ual (3rd Ed.), ISBN 0954612078, http://www.gnu.org/
software/gsl

[4] M. Frigo and S. G. Johnson, FFTW user’s manual, MIT Press,
May 1999, http://www.fftw.org

[5] J. W. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU
Octave version 4.0.0 manual: a high-level interactive language
for numerical computations, 2015, http://www.gnu.org/
software/octave

[6] G. van Rossum, Python tutorial, Technical Report CS-R9526,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam,
May 1995.

[7] David M. Beazley, "SWIG: an easy to use tool for integrating
scripting languages with C and C++", TCLTK’96 Proceedings
of the 4th conference on USENIX Tcl/Tk Workshop, 1996 -
Volume 4.

[8] D. Hestenes, "New Foundations for Classical Mechanics",
Kluwer Academic Publishers, 2nd ed. 1999.

Proceedings of LINAC2016, East Lansing, MI, USA MOPRC016

4 Beam Dynamics, Extreme Beams, Sources and Beam Related Technology
4A Beam Dynamics, Beam Simulations, Beam Transport

ISBN 978-3-95450-169-4
107 Co

py
rig

ht
©

20
17

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

