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Abstract 

Beam tuning and error analysis of a superconducting 

linac for heavy ion beams are introduced in this paper. 

System errors of the beam tuning are analysed numerically, 

which include random errors of cavities and magnets, and 

measurement errors of the absolute beam phase, beam 

bunch length, and transverse beam profiles. Statistical 

formulas are developed from tedious and time-consuming 

numerical simulations, and the studies provide advantage 

tools not only to analyse the errors of linac beam tuning, 

such as RF phase and amplitude tuning of superconducting 

cavity, longitudinal and transverse beam matching, but will 

also be helpful to the linac design with practical beam 

diagnostics and authentic accelerator lattices. 

INTRODUCTION 

In the beam tuning of a superconducting linac or other 

accelerators, imperfections and errors of the accelerator 

components are unavoidable, thus it can be important to 

understand the effects and to improve error tolerance in the 

accelerator design as well as in the practical beam tuning 

particularly for a high power machine. Usually, intensive 

numerical computation and simulations with sophisticated 

accelerator models are needed in the error analysis, which 

is tedious and can be extremely time-consuming. A simple 

statistical estimation, even a rough one, can be considered 

in most cases. 

E.g. the effects of random misalignments of a focusing 

channel in a periodic lattice are analogous to the problem 

of random walk, and a simple statistical estimation of the 

amplitude of beam orbit distortions can be expressed as [1]: 

                     δ =
�∙√�cos (

�2)
                                                         (1) 

where, δ is the rms amplitude of coherent orbit distortion, σ is the rms alignment errors of the focusing elements, µ   

is the phase advance and N number of focusing elements. 

As particle acceleration and RF defocusing effects exist, 

a linac lattice generally is not perfectly periodic, however, 

Eq. (1) is still a suitable estimation of the linac beam orbit 

distortion by misalignments of the focusing magnets, prior 

to any beam orbit corrections. 

CAVITY PHASE AND AMPLITUDE 

Cavity RF phase and amplitude tuning with beam is one 

of the primary tasks before operation of a linac. Phase scan 

and signature matching techniques [2] are widely applied 

in proton and heavy ion linac. Phase and amplitude tuning 

of the FRIB superconducting cavity [3] is used here merely 

as an example, as the method is also valid to other linac. 

 

Figure 1: A cavity phase scan and the signature matching. 

Figure 1 shows a cavity 2π phase scan and the time-of-

flight signature matching in simulations with online model, 

for a beam energy approximately 17 MeV/u it is almost a 

pure sinusoidal curve. Errors of the tuning are mainly come 

from measurement errors of the absolute beam phase with 

beam phase monitor (BPM) pairs. 

To estimate the error of phase scan with random BPM 

phase measurement errors, cavity RF phase and amplitude 

are treated as a phasor, the rms error of this phasor is: 

                      � =
∆�∙√�                                                           (2) 

where, ∆ is random BPM phase errors assumed in uniform 

distributions, A is the amplitude of BPM phase difference, 

and N number of measurements in the phase scan (N ≥ 3).  

    E.g. in Figure 1, an uniform distribution of random BPM 

phase error of ±2° is assumed, the amplitude of BPM phase 

difference is about 28° in the cavity 2π phase scan, number 

of the BPM phase measurements 18, and we have δ ≈1.7%. 

It means that an rms amplitude error of this cavity is about 

1.7%, and an rms phase error is nearly 1° in the tuning. 

    The amplitude of BPM phase difference in a cavity 2π 
phase scan can be expressed as: 

                          � =
�����2 ∙ ����3�3                                        (3) 

where, Q is charge state of the beam particle, mc2 is the rest 

energy, c is speed of light, β and γ relativistic parameters; 

Va is acceleration voltage of the cavity, ω and L - angular 

frequency and drift distance of the BPM pairs. 

    Other errors in a beam time-of-flight measurement with 

BPM pairs, such as BPM alignment errors and calibration 

errors, can be summarized as errors of velocity and energy: 

                          
��� =

��� +
���                                         

                          
��� = �(� + 1)

���                                      (4) 

where, dL is BPM alignment error, and dt calibration error. 
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LONGITUDINAL BEAM MATCHING 

Longitudinal beam matching is conducted with scans of 

buncher cavity amplitude and measurements of the bunch 

length with a bunch shape monitor (BSM) [3]. It can be 

expected that errors of the matching mainly come from the 

BSM measurement errors and the cavity RF errors. We 

studied both errors with intensive computer simulations. 

Based on the results of the simulation studies, an rms 

error of the beam bunch length from the random BSM 

measurement errors can be expressed as: 

                          � = ∆ ∙ �3�                                                      (5)                

where, ∆ is random BSM measurement errors assumed in 

uniform distributions, and N number of the measurements 

in the amplitude scan of the buncher cavity (N ≥ 3). 

 

Figure 2: Beam bunch length rms errors vs random BSM 

measurement errors assumed in uniform distributions. 

    Figure 2 shows a simulation of the bunch length rms 

error (Size) vs random BSM errors in uniform distributions 

against the estimation (Esti.) using Eq. (5). Also shown in 

the figure are errors of longitudinal beam emittance (Emit) 

and beta function (Beta) in the simulation studies. 

    Bunch length error from RF errors is complicated as the 

lattice is not periodic, and the error also depends on from 

where the beam is reconstructed in the matching exercise. 

Specific simulation study with RF errors is still needed. 

    However, the total rms error of beam bunch length after 

longitudinal beam matching can be estimated by: 

                          � = ���� + √2 ∙ ���                             (6) 

where, δBSM is rms bunch length error from measurement 

errors only with a BSM – which may use Eq. (5), and δRF 

is rms bunch length error only from the cavity RF errors –  

which comes from simulation of the linac with RF errors.  

    In Eq. (6), the RF errors are dominated by random jitters 

which do not have any correlation, a longitudinal matching 

exercise is equivalent to a beam goes through a lattice with 

number of RF cavities doubled – the first time reconstruct 

injection beam, and the second time optimize the buncher 

cavity – both processes utilize the cavity RF models. 

TRANSVERSE BEAM MATCHING 

Because transverse beam matching is important to the 

operation of a high power linac, two different algorithms 

for the FRIB driver linac are developed: a wire scanner 

(WS) array with 4 or 5 WS stations for simultaneous beam 

profile measurements when a beam matching is needed and 

spaces are available, and multiple quadrupole scans with 

the beam profile measurements using a single WS station 

when the space is limited. In the linac a horizontal-vertical 

beam coupling exists, thus each WS station is equipped 

with a horizontal, a vertical, and a 45° diagonal wire [4]. 

In the error analysis of transverse beam matching, it is 

noted that the errors also depend on the lattice design and 

where the beam is reconstructed in the matching exercise. 

To simplify the problem, error of only the beam size is 

concerned and analysed in details. As in beam transport the 

mismatch factor is roughly proportional to the error of the 

maximum beam projection [5]. 

When there is no beam coupling, errors of the transverse 

beam matching will be the same as that of the longitudinal 

beam matching, in both horizontal and vertical planes, the 

beam size errors after a matching exercise with random WS 

measurement errors can be expressed as Eq. (5), where ∆ 

is replaced by random WS measurement errors which is 

also assumed in uniform distributions. N is number of the 

beam profile measurements in the matching exercise: it is 

5 when using the 5-WS array method, and 9 with the two-

quadrupole scans method as which totally has 9 scan steps 

and associated beam profile measurements. 

Beam size error from quadrupole magnet errors depends 

on where the beam is reconstructed, and it also depends on 

connections of the power supplies. When the quadrupole 

pairs are powered in series, error of phase advance is [6]: 

                      � = 2tan (
�2) ∙ ��2 ∙ σ                                   (7) 

where, δ is rms error of the beam phase advance, σ is rms 

error of the quadrupole magnets, µ  is the phase advance per 

cell and N total number of the quadrupoles.  

If all the quadrupoles are powered independently, then 

the error of phase advance can be expressed as [6]: 

                      � = �1+���2(
�2)���2(

�2)
∙ √� ∙ σ                               (8)  

In intensive numerical simulations with only quadrupole 

errors, it is noted that error of the maximum beam size in a 

periodic lattice is equal to the error of phase advance, while 

error of the minimum beam size in the same periodic lattice 

is approximately twice that of the phase advance. 

From the above studies, a mismatch from measurement 

errors with WS and errors of quadrupoles after a transverse 

matching without beam coupling can be expressed as: 

                          � = ��� + √2 ∙ ��                                    (9) 

where, δWS is rms beam size error from WS measurement 

errors only, and δQ is the beam size error from quadrupole 

errors only.  

    Without a beam coupling, Eq. (5) and Eq. (7) or Eq. (8) 

can be used for error analysis of transverse beam matching 

with the WS measurement errors and quadrupole magnet 

errors. However, the matching can much more complicated 

when strong beam coupling exist in the FRIB linac. 
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    Because multiple solutions exist in the reconstruction of 

a coupled beam with the WS measurements even without 

any errors, a satisfactory transverse beam matching can be 

demonstrated with the reconstructed beam parameters that 

are completely different to those of the injection ones. 

Analysis of transverse beam matching with beam coupling 

exists may not be so straight forward with a practical global 

searching algorithms as which may intend to solve all the 

possibilities over the entire beam phase spaces, instead we 

have to limit the searching range within a local minimum 

so that a reasonable answer could be found and also can be 

directly benchmarked against the input beam parameters – 

a bad data is eliminated if the difference is beyond 3 sigma; 

as a consequence, an error analysis of the beam transverse 

matching could be conducted within a limited resource. 

    In the simulation studies with several thousand seeds of 

the 5-WS array and the two-quad scan transverse matching 

exercises, an rms error of the beam size from random WS 

measurement errors can be expressed as: 

                          � = 2∆ ∙ �3�                                            (10) 

where, ∆ is random WS measurement errors assumed in 

uniform distributions, and N is the number of the beam 

profile measurements (N ≥ 4). 

Table 1: Errors of Beam Parameters of 5-WS Array 

WS 

 (%) 

Eq. (10) 

(%) 

Simulation Studies 

ErrAVG (%)  ErrMIN ErrMAX 

±2.5 3.9 2.5 1.8 3.3 

±5 7.7 8.3 5.1 12 

±10 15 19 15 23 

±15 23 26 22 30 

    Table 1 lists the results of simulation studies of the 5-WS 

array against Eq. (10), and Table 2 is those of the two-quad 

scans against the equation. Even though rms errors of the 

minimum and the maximum beam parameters (horizontal 

and vertical beam emittances and beta functions) scattered 

wildly, an average rms error of the beam size is reasonably 

close to Eq. (10). As the number of seeds is limited to each 

case (~500), statistical errors or uncertainties of 4% are 

expected in these simulation studies. 

Table 2: Errors of Beam Parameters of Two-Quad Scan 

WS 

 (%) 

Eq. (10) 

(%) 

Simulation Studies 

ErrAVG (%)  ErrMIN ErrMAX 

±2.5 2.9 2.8 1.7 4.9 

±5 5.8 6.2 3.1 11 

±10 12 10 5.3 15 

±15 17 14 12 17 

    Total errors of a beam transverse matching exercise from 

random errors of both WS measurements and quadrupole 

magnets when a beam coupling exists can also be estimated 

using Eq. (9), and to conduct the estimation, Eq. (10) can 

be applied for WS random measurement errors, and Eq. (7) 

or Eq. (8) can be applied for the quadrupole errors which 

depends on the connections of the power supplies. Here, 

we need to point out one more time that Eq. (7) and (8) can 

be applied directly in the case of analysis of the maximum 

beam size, while in the case of the minimum beam size is 

concerned instead for the transverse beam matching, it 

must times two to have a correct solution. 

    In most of the above error analysis random jitters which 

have no any correlations are assumed the dominate error of 

the beam measurements as well as the beam elements, and 

under such conditions, to reduce errors of the beam tuning, 

it is always favourable to repeat and increase number of the 

beam measurements, and meanwhile to reduce number of 

involved beam elements in the beam matching exercises, 

as which helps to reduce errors and to improve precision of 

the experiments. However, in the case of systematic errors, 

it is well known that simply increase the number of beam 

measurements or repeat the beam experiments offer little 

help; to reduce systematic error of the matching, different 

approaches are necessary. Nonetheless, lengthy numerical 

simulations and computations may not very important to 

the analysis of systematic errors, as in principle, these 

errors could be recalibrated with different measurement 

methods or/and finely corrected with various beam based 

techniques. 

    Uniform measurement errors are assumed in the studies, 

as the actual distribution is unknown, however, in the cases 

of quasi-Gaussian distributions with rms errors, it can be 

easily converted by a factor of 1/√3. It should also be noted 

that in the matching exercises beam profile measurements 

better be evenly distributed within 90° phase advance 

whenever possible to increase the sensitivity, or ambiguity 

appears and the errors could be worse than the predictions 

with the equations, Eq. (5) and Eq. (10).  

CONCLUSIONS 

Beam tuning and error analysis of a superconducting 

linac with random measurement errors and beam element 

errors are studied with intensive computer simulations, and 

simple statistical equations are developed to estimate the 

effects of those errors. These equations can be applied in 

estimations of errors in the beam tuning exercises, and can 

also be directly used in superconducting linac designs with 

practical beam diagnostic systems and realistic linac lattice 

in which errors and imperfections exist, and whenever the 

errors become important. 
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