2 Proton and Ion Accelerators and Applications
2G Other Proton/Ion
Paper Title Page
TUPRC007 An RFQ Based Neutron Source for BNCT 427
SPWR018   use link to see paper's listing under its alternate paper code  
 
  • X.W. Zhu, Z.Y. Guo, Y.R. Lu, H. Wang, Z. Wang, K. Zhu, B.Y. Zou
    PKU, Beijing, People's Republic of China
 
  Boron Neutron Capture Therapy (BNCT), promises a bright prospect for future cancer treatment, in terms of effectiveness, safety and less expanse. The PKU RFQ group proposes an RFQ based neutron source for BNCT. A unique beam dynamics design of 162.5 MHz BNCT-RFQ, which accelerates 20 mA of H+ from 30 keV to 2.5 MeV in CW operation, has been performed in this study. The Proton current will be about 20 mA. The source will deliver a neutron yield of 1.76×1013 n/sec/cm2 in the Li(p, n)Be reaction. Detailed 3D electromagnetic (EM) simulations of all components, including cross-section, tuners, pi-rods, and undercuts, of the resonant structure are performed. The design of a coaxial type coupler is developed. Two identical RF couplers will deliver approximately 153 kW CW RF power to the RFQ cavity. RF property optimizations of the RF structures are performed with the utilization of the CST MICROWAVE STUDIO.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPRC007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR023 The ARIEL Radioactive Ion Beam Transport System 891
 
  • M. Marchetto, T.J. Alderson, F. Ames, R.A. Baartman, J.D. Chak, P.E. Dirksen, T.G. Emmens, G.W. Hodgson, T. Hruskovec, M. Ilagan, R.E. Laxdal, N. Muller, D. Preddy, D. Rowbotham, S. Saminathan, Q. Temmel, V.A. Verzilov, D. Yosifov
    TRIUMF, Vancouver, Canada
 
  The Advanced Rare IsotopE Laboratory (ARIEL) is going to triple the radioactive ion beam (RIB) production at TRIUMF. The facility will enable multi-user capability in the Isotope Separation and ACceleration (ISAC) facility by delivering three RIBs simultaneously. Two new independent target stations will generate RIBs using a proton driver beam up to 50 kW from the 500 MeV cyclotron and an electron driver beam for photo-fission from the new superconducting e-linac in addition to the existing ISAC RIB production. The multi-user capability is enabled by a complex radioactive ion beam transport switchyard consisting entirely of electrostatic optics. This system includes two separation stages at medium and high resolution with the latter achieved by a mass separator designed for an operational resolving power of 20000 for a 3 micrometer transmitted emittance. Part of the system also includes an Electron Beam Ion Source (EBIS) charge breeder fed by a radio frequency cooler that allows the post-acceleration of heavy masses. Beam selection downstream of the EBIS is achieved by means of a Nier type separator. The facility is in a detailed design stage and some tests, procurements and partial installation are foreseen by the end of 2016.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR024 SPIRAL2 Project: Integration of the Accelerator Processes, Construction of the Buildings and Process Connections 894
 
  • P. Anger, P. Bisson, O. Danna, X. Hulin, J.-M. Lagniel, S. Montaigne, F. Perocheau, E. Petit, L. Roupsard
    GANIL, Caen, France
 
  The GANIL SPIRAL 2 Project is based on the construction of a superconducting ion CW LINAC (up to 5 mA - 40 MeV deuteron and 33 MeV proton beams, up to 1 mA - 14.5 MeV/u heavy ion beams) with two experimental areas named S3 ('Super Separator Spectrometer' for very heavy and super heavy element production) and NFS ('Neutron For Science'), The building studies as well as the accelerator and experimental equipment integration started in 2009. The ground breaking started at the end of 2010. The integration task of the different equipments into the buildings is managed by a trade-oriented integration unit gathering the accelerator integration team, the building prime contractor and a dedicated contracting assistant. All work packages are synthesized at the same time using 3D models. 3D tools are used to carry out integration, synthesis, process connections and the preparation of the future assembly. Since 2014, the buildings and process connections are received and the accelerator installation is well advanced. This contribution will describe these 3D tools, the building construction, the process connection status and our experience feedback.  
poster icon Poster THPLR024 [3.620 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR025 Modernisation of the 108 MHz RF Systems at the GSI UNILAC 898
 
  • B. Schlitt, G. Eichler, S. Hermann, M. Hoerr, M. Mueh, S. Petit, A. Schnase, G. Schreiber, W. Vinzenz, J. Zappai
    GSI, Darmstadt, Germany
 
  A substantial modernisation of the RF systems at the 108 MHz Alvarez type post-stripper section of the GSI heavy ion linac UNILAC was launched in 2014 to prepare the existing facility for the future FAIR operation. A new 1.8 MW RF cavity amplifier prototype for low duty-cycle operation (2 ms pulse length at 10 Hz repetition rate) based on the widely-used tetrode TH558SC was designed and built by THALES and is under commissioning. A call for tenders was started for a 150 kW solid state driver amplifier. An RF test bench for the amplifier prototypes is in preparation at GSI including new control racks, commercial grid power supplies, and a modern PLC system for amplifier control. The existing powerful 1 MVA anode power supplies will be reused and are also being equipped with new PLC systems. The development of a digital low-level RF system based on the MTCA.4 standard and commercial vector modulator and FPGA boards was started. Status and details of the modernisation as well as first commissioning results of the new high power amplifier prototype will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR026 Radio Frequency Surface Plasma Source With Solenoidal Magnetic Field 902
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • G. Dudnikova
    UMD, College Park, Maryland, USA
  • G. Dudnikova
    ICT SB RAS, Novosibirsk, Russia
  • B. Han, S. Murrey, C. Stinson
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.R. Pennisi, C. Piller, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: The work was supported in part by US DOE Contract DE-AC05-00OR22725 and by STTR grant, DE-SC0011323.
Operation of Radio Frequency surfaces plasma sources (RF SPS) with a solenoidal magnetic field are described. RF SPS with solenoidal and saddle antennas are discussed. Dependencies of beam current and extraction current on RF power, gas flow, solenoidal magnetic field are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)