1 Electron Accelerators and Applications
1C Synchrotron Light Sources
Paper Title Page
MOP106022 Generation of Coherent Undulator Radiation at ELPH, Tohoku University 330
 
  • S. Kashiwagi, T. Abe, H. Hama, F. Hinode, T. Muto, I. Nagasawa, K. Nanbu, H. Saito, Y. Saito, Y. Shibasaki, K. Takahashi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
 
  A test accelerator as a coherent terahertz source (t-ACTS) has been under development at Tohoku University, in which an intense coherent terahertz (THz) radiation generated by an extremely short electron bunch. Velocity bunching scheme in a traveling accelerating structure is employed to generate femtosecond electron bunches. Spatial and temporal coherent radiation in THz region can be produced by the electron bunches with small transverse emittance. A long-period undulator, which has 25 periods with a period length of 10 cm and a peak magnetic field of 0.41 T, has been also developed and installed to provide intense coherent THz undulator radiation. By optimizing the bunch length, we found that it is possible to generate a coherent undulator radiation that contain only the fundamental wave from numerical studies. We are planning an experiment with 30 MeV beam to generate a coherent undulator radiation of 2.5THz. In the conference, we will report the preliminary experimental results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOP106022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPLR015 Design of a Gamma-Ray Source Based on Inverse Compton Scattering at the Fast Superconducting Linac 503
 
  • D. Mihalcea
    Northern Illinois University, DeKalb, Illinois, USA
  • B.T. Jacobson, A.Y. Murokh
    RadiaBeam, Santa Monica, California, USA
  • P. Piot, J. Ruan
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is sponsored by the DNDO via contract with NIU.
A Watt-level average-power gamma-ray source is currently under development at the FermiLab Accelerator Science & Technology (FAST) facility. The source is based on the inverse Compton scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performance and the main challenges ahead.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOP05 Status and Operation of the ALBA Linac 754
THPLR002   use link to see paper's listing under its alternate paper code  
 
  • R. Muñoz Horta, D. Lanaia, F. Pérez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The pre-injector of the ALBA Light Source is a Linac that delivers electrons up to a maximum energy of 125 MeV. It consist in a pre-bunching, a bunching and two accelerating sections feed by two 35 MW klystrons. Since July 2014, ALBA is operating in top-up mode, and the Linac is delivering 110 MeV electrons in multibunch mode every 20 minutes. Recently, new injection modes have been implemented and successfully tested. For one side, injection to the ALBA Booster is now also available with only one of the two klystrons in operation, and the Linac delivering a 67 MeV beam. On the other hand, the Linac single bunch mode has been integrated to the top-up operation application. By means of an algorithm, single bunch mode operation provides any kind of filling pattern in the ALBA storage ring, with single bunch shots injected to those buckets with lowest current. The performance of the Linac beam operated in these different modes is reported.  
slides icon Slides THOP05 [0.604 MB]  
poster icon Poster THOP05 [4.967 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THOP05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)