Author: Saveliev, Y.M.
Paper Title Page
MOOP09 Dielectric and THz Acceleration (Data) Programme at the Cockcroft Institute 62
MOPRC003   use link to see paper's listing under its alternate paper code  
 
  • S.P. Jamison, Y.M. Saveliev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.B. Appleby, H.L. Owen, T.H. Pacey, T.H. Pacey, G.X. Xia
    UMAN, Manchester, United Kingdom
  • G. Burt, R. Letizia, C. Paoloni
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A.W. Cross
    USTRAT/SUPA, Glasgow, United Kingdom
  • D.M. Graham
    The University of Manchester, The Photon Science Institute, Manchester, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work has been funded by STFC
Normal conducting RF systems are currently able to pro-vide gradients of around 100 MV/m, limited by break-down on the metallic structures. The breakdown rate is known to scale with pulse length and, in conventional RF systems, this is limited by the filling time of the RF struc-ture. Progressing to higher frequencies, from RF to THz and optical, can utilise higher gradient structures due to the fast filling times. Further increases in gradient may be possible by replacing metallic structures with dielectric structures. The DATA programme at the Cockcroft Insti-tute is investigating concepts for particle acceleration with laser driven THz sources and dielectric structures, beam driven dielectric and metallic structures, and optical and infrared laser acceleration using grating and photonic structures. A cornerstone of the programme is the VELA and CLARA electron accelerator test facility at Daresbury Laboratory which will be used for proof-of-principle experiments demonstrating particle acceleration.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOOP09  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TH3A03 The VELA and CLARA Test Facilities at Daresbury Laboratory 734
 
  • P.A. McIntosh, D. Angal-Kalinin, J.A. Clarke, L.S. Cowie, B.D. Fell, S.P. Jamison, B.L. Militsyn, Y.M. Saveliev, D.J. Scott, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. Gleeson, T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The Versatile Electron Linear Accelerator (VELA) provides enabling infrastructures targeted at the development and testing of novel and compact accelerator technologies, specifically through partnership with academia and industry, aimed at addressing applications in medicine, health, security, energy and industrial processing. The facility is now fully commissioned and is taking advantage of the variable electron beam parameters to demonstrate new techniques/processes or otherwise develop new technologies for future commercial realization. Examples of which include; electron diffraction and new cargo scanning processes. The Compact Linear Accelerator for Research and Applications (CLARA) will be a novel FEL test facility, focused on the generation of ultra-short photon pulses with extreme levels of stability and synchronization. The principal aim is to experimentally demonstrate that sub-cooperation length pulse generation with FELs is viable, and to compare the various schemes being championed. The results will translate directly to existing and future X-ray FELs, enabling attosecond pulse generation. Both the VELA and CLARA facilities are co-located at Daresbury Laboratory and provide the UK with a unique platform for scientific and commercial R&D using ultra-short pulse, high precision electron and photon beams.  
slides icon Slides TH3A03 [11.795 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-TH3A03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)