Author: Saito, N.
Paper Title Page
THPLR009 A Compact Muon Accelerator for Tomography and Active Interrogation 861
 
  • R.W. Garnett, S.S. Kurennoy, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
  • K. Hasegawa
    JAEA, Ibaraki-ken, Japan
  • S. Portillo, E. Schamiloglu
    University of New Mexico, Albuquerque, USA
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
Muons have been demonstrated to be great probes for imaging large and dense objects due to their excellent penetrating ability. At present there are no muon accelerators. Development of a compact system that can produce an intense beam of accelerated muons would provide unique imaging options for stockpile stewardship while delivering minimal radiation dose, as well as various homeland-security and industrial applications. Our novel compact accelerator approach allows a single linac to be used to first accelerate an electron beam to 800 MeV to generate muons by interacting with a production target in a high-field solenoid magnet and then to collect and accelerate these low-energy muons to 1 GeV to be used for imaging or active interrogation. The key enabling technology is a high-gradient accelerator with large energy and angular acceptances. Our proposed solution for efficient acceleration of low-energy muons is a 0-mode linac coupled with conventional electron RF accelerating structures to provide a compact system that could deliver a controllable high-flux beam of muons with well-defined energy to allow precise radiographic inspections of complicated objects. The details of the conceptual design will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR062 Muon Acceleration Using an RFQ 992
 
  • Y. Kondo, K. Hasegawa
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Fukao, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, K. Shimomura
    KEK, Tokai, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H-line) at the J-PARC MLF are once stopped in an silica aerojel target and room temperature muoniums are evaporated from the aerogel. They are dissociated with laser (ultra slow muons), then accelerated up to 212 MeV using a linear accelerator. As the first accelerating structure, an RFQ will be used. We are planning to use a spare RFQ of the J-PARC linac for the first acceleration test. For this acceleration test, an degraded muon beam will be used instead of the ultra slow muon sourece. In this paper, present status of this muon acceleration test using the J-PARC RFQ is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FR1A05 Development of a Muon Linac for the G-2/EDM Experiment at J-PARC 1037
 
  • M. Otani, N. Kawamura, T. Mibe, F. Naito, M. Yoshida
    KEK, Ibaraki, Japan
  • K. Hasegawa, Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • T. Ito
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Iwata
    NIRS, Chiba-shi, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Precision measurements of the muon's anomalous magnetic moment (g-2) and electric dipole moment (EDM) are one of the effective ways to test the standard model. An ultra-cold muon beam is generated from a surface muon beam by a thermal muonium production and accelerated to 300 MeV/c by a linac. The muon linac consists of an RFQ, an inter-digital IH, a Disk And Washer structure, and a disk loaded structure. The ultra-cold muons will have an extremely small momentum spread of 0.3 % with a normalized transverse emittance of around 1.5 pi mm-mrad. The design and status of the muon linac at J-PARC will be presented.  
slides icon Slides FR1A05 [13.154 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-FR1A05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)