Author: Rybarcyk, L.
Paper Title Page
MOPLR065 High-Gradient X-band Structures for Proton Energy Booster at LANSCE 280
 
  • S.S. Kurennoy, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
 
  Increasing energy of proton beam at LANSCE from 800 MeV to 3 GeV improves radiography resolution ~10 times. Using superconducting RF cavities with gradients ~15 MV/m after the existing linac would result in a long and expensive booster. We propose accomplishing the same with a much shorter cost-effective booster based on normal conducting high-gradient (~100 MV/m) RF accelerating structures. Such X-band high-gradient structures have been developed for electron acceleration and operate with typical RF pulse lengths below 1 us. They have never been used for protons because typical wavelengths and apertures are smaller than the proton bunch sizes. However, these limitations do not restrict proton radiography (pRad) applications. A train of very short proton bunches with the same total length and charge as the original long proton bunch will create the same single radiography frame, plus pRad limits contiguous trains of beam micro-pulses to below 60 ns to prevent blur in images. For a compact pRad booster at LANSCE, we explore feasibility of two-stage design: a short S-band section to capture and compress the 800-MeV proton beam followed by the main high-gradient X-band linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPLR072 The Effect of DTL Cavity Field Errors on Beam Spill at LANSCE 301
 
  • L. Rybarcyk, R.C. McCrady
    LANL, Los Alamos, New Mexico, USA
 
  The Los Alamos Neutron Science Center (LANSCE) accelerator comprises two (H+ and H) 750-keV Cockcroft-Walton style injectors, a 201.25-MHz, 100-MeV drift-tube linac (DTL) and an 805-MHz, 800-MeV coupled-cavity linac (CCL). As part of the LANSCE Risk Mitigation project a new digital low-level radio frequency (LLRF) control system is being deployed across the linac, starting with the DTL. Related to this upgrade, a study was performed where specific cavity field errors were simultaneously introduced in all DTL tanks about the nominal stable, low-spill, production set points to mimic LLRF control errors. The impact of these errors on the resultant beam spill was quantified for the nominal 100 μA, 800-MeV Lujan beam. We present the details of the measurement approach and results that show a rapid increase in total linac beam spill as DTL cavity field phase and amplitude errors are increased.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-MOPLR072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPLR009 A Compact Muon Accelerator for Tomography and Active Interrogation 861
 
  • R.W. Garnett, S.S. Kurennoy, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
  • K. Hasegawa
    JAEA, Ibaraki-ken, Japan
  • S. Portillo, E. Schamiloglu
    University of New Mexico, Albuquerque, USA
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
Muons have been demonstrated to be great probes for imaging large and dense objects due to their excellent penetrating ability. At present there are no muon accelerators. Development of a compact system that can produce an intense beam of accelerated muons would provide unique imaging options for stockpile stewardship while delivering minimal radiation dose, as well as various homeland-security and industrial applications. Our novel compact accelerator approach allows a single linac to be used to first accelerate an electron beam to 800 MeV to generate muons by interacting with a production target in a high-field solenoid magnet and then to collect and accelerate these low-energy muons to 1 GeV to be used for imaging or active interrogation. The key enabling technology is a high-gradient accelerator with large energy and angular acceptances. Our proposed solution for efficient acceleration of low-energy muons is a 0-mode linac coupled with conventional electron RF accelerating structures to provide a compact system that could deliver a controllable high-flux beam of muons with well-defined energy to allow precise radiographic inspections of complicated objects. The details of the conceptual design will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-LINAC2016-THPLR009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)