Paper |
Title |
Page |
TUPLR011 |
Performance of the Novel Cornell ERL Main Linac Prototype Cryomodule |
492 |
|
- F. Furuta, J. Dobbins, R.G. Eichhorn, M. Ge, D. Gonnella, G.H. Hoffstaetter, M. Liepe, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
|
|
|
The main linac cryomodule (MLC) for the future energy-recovery linac (ERL) based X-ray light source at Cornell has been designed, fabricated, and tested. It houses six 7-cell SRF cavities with individual higher order-modes (HOMs) absorbers, cavity frequency tuners, and one magnet/BPM section. Cavities have achieved the specification values of 16.2MV/m with high-Q of 2.0·1010 in 1.8K in continuous wave (CW) mode. During initial MLC cavity testing, we encountered some field emission, reducing Q and lowering quench field. To overcome field emission and find optimal cool-down parameters, RF processing and thermal cycles with different cool-down conditions has been done. Here we report on these studies and present final results from the MLC cavity performance.
|
|
|
Poster TUPLR011 [2.389 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2016-TUPLR011
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPRC015 |
Cool-Down Performance of the Cornell ERL Cryomodules |
802 |
|
- R.G. Eichhorn, F. Furuta, M. Ge, G.H. Hoffstaetter, M. Liepe, S.R. Markham, T.I. O'Connell, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich, D. Widger
Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
|
|
|
In the framework of the ERL prototyping, Cornell University has built two cryomodules, one injector module and one prototype Main Linac Cryomodule (MLC). In 2015, the MLC was successfully cooled down for the first time. We will report details on the cool-down as well as cycle tests we did in order to achieve slow and fast cool-down of the cavities. We will also report on the improvement we made on the injector cryomodule which also included a modification of the heat exchanger can that allows now a more controlled cool-down, too.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-LINAC2016-THPRC015
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|